Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M
B - Atomic number. Dmitri Mendeleev organised the table according to atomic weight, however this caused problems with elements such as iodine and tellurium, Iodine has a higher mass, but a lower atomic number. And to make iodine in the same group as similar elements (halogens), Mendeleev had to break his own rules and put it before tellurium in the table. Moseley fixed this problem by ordering the elements according to atomic (proton) number.
This rock is balanced by roots on the ground that are very strong
Evaporation, Condensation, precipitation and collection would be stages
Sodium Chloride is a compound.