Answer: 22.5 percent of incoming solar radiation goes directly to the surface of the Earth and is absorbed.
Explanation: Transfer of radiation through a planet's atmosphere. A planet and its atmosphere, in our solar system, can radiate back to space only as much energy as it absorbs from incoming solar radiation.
Answer:
Option 3. The catalyst does not affect the enthalpy change (
) of a reaction.
Explanation:
As its name suggests, the enthalpy change of a reaction (
) is the difference between the enthalpy of the products and the reactants.
On the other hand, a catalyst speeds up a reaction because it provides an alternative reaction pathway from the reactants to the products.
In effect, a catalyst reduces the activation energy of the reaction in both directions. The reactants and products of the reaction won't change. As a result, the difference in their enthalpies won't change, either. That's the same as saying that the enthalpy change
of the reaction would stay the same.
Refer to an energy profile diagram. Enthalpy change of the reaction
measures the difference between the two horizontal sections. Indeed, the catalyst lowered the height of the peak. However, that did not change the height of each horizontal section or the difference between them. Hence, the enthalpy change of the reaction stayed the same.
Answer:
Volcanoes cool off the earth by emitting heat from its interior. They also add islands and for example, Hawaii was created / is made out of volcanoes. The deposits from volcanoes can also be used for building materials. Volcanic explosions have caused the atmosphere and oceans to form. Volcanic deposits also create land which is fertile.