Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
<span>To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.</span>
<span>the flower of a plant will attract an animal such as a bee that will take the pollen from the plant and transmit it to another plant. this shows that flowers help plant reproduce as they will attract an animal that will carry reproductive material to another plant</span>
A sign of genetic mutation is a missing finger or an extra limb of some sort. Also people who study the human genome can trace gene pairs that are not complete or mixed up which can cause genetic mutations.
-- We already know the rate of revolutions per time ...
it's 1 revolution per 0.065 sec. We just have to
unit-convert that to 'per minute'.
(1 rev / 0.065 sec) x (60 sec / min) = (1 x 60) / (0.065) = <em>923 RPM</em> (rounded)
_______________________________
-- 1 revolution = 2π radians
(2π rad) / (0.065 sec) = (2π / 0.065) = <em>96.66 rad/sec</em> (rounded)