Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero
This drag force is always opposite to the object's motion, and unlike friction between solid surfaces, the drag force increases as the object moves faster.
There isnt enough information to answer the question, the missing variable is "distance from said falling spot and ground"
Answer:
Given that
Dry-bulb temperature(T) =24°C
Wet-bulb temperature(Tw) = 17°C
Pressure ,P = 1 atm
As we know that psychrometric chart are drawn at constant pressure.
From the diagram
ω= specific humidity
Lets take these two lines Dry-bulb temperature(T) line and Wet-bulb temperature(Tw) cut at point P
From chart at point P
a)
Specific humidity,ω = 0.00922 kg/kg
b)
The enthalpy ( h)
h=47.59 KJ/kg
c)
The relative humidity, RH
RH= 49.58 %
d)
Specific volume ,
v= 0.853 m³/kg
Answer:
<u>Given</u><em> </em><em>-</em><em> </em><u>M</u><u> </u><u>=</u><u> </u>20 kg
k = 0.4
F = 200 N
<u>To </u><u>find </u><u>-</u><u> </u> acceleration
<u>Solution </u><u>-</u><u> </u>
F= kMA
200 = 0.4 * 20 * acceleration
200 = 8 * a
a = 8/200
a = 0.04 m s²
<h3>a = 0.04 m s²</h3>