The elastic potential energy of a spring is given by

where k is the spring's constant and x is the displacement with respect to the relaxed position of the spring.
The work done by the spring is the negative of the potential energy difference between the final and initial condition of the spring:

In our problem, initially the spring is uncompressed, so

. Therefore, the work done by the spring when it is compressed until

is

And this value is actually negative, because the box is responsible for the spring's compression, so the work is done by the box.
Answer:
K = m g (A - A2)
Explanation:
In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential
Em = U₀ = m g A
For when the system is at an ele
Elongation A2 less than A, energy has two parts
Em = K + U₂
K = Em –U₂
We substitute
K = m g A - m gA2
K = m g (A - A2)
Answer:
a=m/f is not an equation under newton's second law
Explanation:
newton's second law of motion is represented using: f=ma
where a=v-u/t
therefore it becomes,f=m(v-u)/t
from f=ma,
a will become f/m,
m will become f/a
Answer:4-strikes the plane at same time as the other body
Explanation:
Given
If both bodies is falling on a horizontal plane and second body is given an acceleration in horizontal direction then it does not change the time to reach the Horizontal Plate as there is no change in vertical direction.
Horizontal acceleration will give only horizontal range and horizontal velocity.
An ... (Base ) .... is a compound that turns red litmus paper blue and is often found in soaps and detergents.