Answer:
1. 1. A quantity is completely described by magnitude alone. A quantity Is completely described by a magnitude with a direction.
[a]. scalar, vector
b. vector, scalar
2.2. Speed is a velocity is a quantity and quantity.
a. scalar, vector
[b]. vector, scalar
Answer:
n = 1.4
Explanation:
Given,
R1 = 18 cm, R2 = -18 cm
From lens makers formula
1/f = (n - 1)(1/18 + 1/18) = (n-1)/9
f = 9/(n-1)
Power, P = 1/f ( in m) = (n-1)/0.09
Now, this lens is in with conjunction with a concave mirror which then can be thought of as to be in conjunction with another thin lens
Power of concave mirror = P' = 1/f ( in m) = 2/R = 2/0.18 = 1/0.09
Net power of the combination = 2P + P' = 2(n-1)/0.09 + 1/0.09 = 1/0.05
n = 1.4
The formula is F = ( q1 * q2 ) / r ^ 2
<span>where: q is the individual charges of each ion </span>
<span>r is the distance between the nuclei </span>
<span>The formula is not important but to explain the relationship between the atoms in the compounds and their lattice energy. </span>
<span>From the formula we can first conclude that compounds of ions with greater charges will have a greater lattice energy. This is a direct relationship. </span>
<span>For example, the compounds BaO and SrO, whose ions' charges are ( + 2 ) and ( - 2 ) respectively for each, will have greater lattice energies that the compounds NaF and KCl, whose ions' charges are ( + 1 ) and ( - 1 ) respectively for each. </span>
<span>So Far: ( BaO and SrO ) > ( NaF and KCl ) </span>
<span>The second part required you find the relative distance between the atoms of the compounds. Really, the lattice energy is stronger with smaller atoms, an indirect relationship. </span>
<span>For example, in NaF the ions are smaller than the ions in KCl so it has a greater lattice energy. Because Sr is smaller than Ba, SrO has a greater lattice energy than BaO. </span>
<span>Therefore: </span>
<span>Answer: SrO > BaO > NaF > KCl </span>
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.