<h3><u>
Answer:</u></h3>
When it was first made, it was heavier
<h3><u>
Explanation:</u></h3>
So there was originally air in the Ice Cream because they fluff it up like that. When it melts, those are gone.
Answer:
specific gravity = 0.8
specific gravity of solution = 2
Explanation:
given data
rectangular block above water = 0.400 in
rectangular block below water = 1.60 in
material floats below water = 0.800 in
solution
first we get here specific gravity of block that is
specific gravity = block vol below ÷ total block vol × specific gravity water ..............1
put here value we get
specific gravity =
× 1
specific gravity = 0.8
and now we get here specific gravity of solution that is express as
specific gravity of solution = total block vol ÷ block vol below × specific gravity block ........................2
put here value we get
specific gravity of solution =
× 0.8
specific gravity of solution = 2
Answer:
2.4525 N
Explanation:
The earths gravity is 9.81 N/Kg
And so to work this out you would multiply 9.81 by 0.250 which equals to 2.4525N
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Many devices have been invented to accurately measure temperature. It all started with the establishment of a temperature scale. This scale transformed the measurement of temperature into meaningful numbers.
In the early years of the eighteenth century, Gabriel Fahrenheit (1686-1736) created the Fahrenheit scale. He set the freezing point of water at 32 degrees and the boiling point at 212 degrees. These two points formed the anchors for his scale.
Later in that century, around 1743, Anders Celsius (1701-1744) invented the Celsius scale. Using the same anchor points, he determined the freezing temperature for water to be 0 degree and the boiling temperature 100 degrees. The Celsius scale is known as a Universal System Unit. It is used throughout science and in most countries.
There is a limit to how cold something can be. The Kelvin scale is designed to go to zero at this minimum temperature. The relationships between the different temperature scales are:
oK = 273.15 + oC oC = (5/9)*(oF-32) oF = (9/5)*oC+32
oF oC oK
Water boils 212 100 373
Room Temperature 72 23 296
Water Freezes 32 0 273
Absolute Zero -460 -273 0
At a temperature of Absolute Zero there is no motion and no heat. Absolute zero is where all atomic and molecular motion stops and is the lowest temperature possible. Absolute Zero occurs at 0 degrees Kelvin or -273.15 degrees Celsius or at -460 degrees Fahrenheit. All objects emit thermal energy or heat unless they have a temperature of absolute zero.
If we want to understand what temperature means on the molecular level, we should remember that temperature is the average energy of the molecules that composes a substance. The atoms and molecules in a substance do not always travel at the same speed. This means that there is a range of energy (the energy of motion) among the molecules. In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. Sometimes these molecules collide with each other. When this happens the higher speed molecule transfers some of its energy to the slower molecule causing the slower molecule to speed up and the faster molecule to slow down. If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced. So, higher temperatures mean a substance has higher average molecular motion. We do not feel or detect a bunch of different temperatures for each molecule which has a different speed. What we measure as the temperature is always related to the average speed of the molecules in a system