1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
7

Help with the blank ones please

Physics
2 answers:
wlad13 [49]3 years ago
7 0
The car, the truck, the truck
in that order
hjlf3 years ago
5 0
2).  truck

3).  I answered this one somewhere else

4).  truck
You might be interested in
Which is true about surface waves?
Sauron [17]
The disturbance does not have a specific motions 
7 0
3 years ago
Read 2 more answers
How fast would you have to travel on the surface of earth at the equator to keep up with the sun (that is, so that the sun would
professor190 [17]

Answer: 1037 miles per hour

Explanation: In order to see the sun in the same position in the sky, you would have to travel against the speed of rotation of the earth, because this is what causes the sun to appear in a constantly changing position.

Because of this, we will have to calculate the speed of rotation of the earth. To get started, we must know the circumference of the earth. Assuming the circumference formula for a sphere,

Circumference=2\pi R

Where R is the radius of the earth, we find that the perimeter of the earth is approximately 24881 miles. The equation to calculate speed is given by

v=\frac{Distance}{Time}

Because the earth completes one rotation in 24 hours, we have to find the speed of rotation as the perimeter of the earth divided by 24 hours.

The obtained result is 1037 miles per hour.

You would have to travel at 1037 miles per hour in the direction opposite to the direction the rotation is ocurring in.

5 0
4 years ago
Why does a ball accelerate as it rolls down a hill?
Anika [276]
The ball accelerates because of gravity.
6 0
3 years ago
Read 2 more answers
Scenario
Anvisha [2.4K]

Answer:

1) t = 23.26 s,  x = 8527 m, 2)   t = 97.145 s,  v₀ = 6.4 m / s

Explanation:

1) First Scenario.

After reading your extensive problem, we are going to solve it, for this exercise we must use the parabolic motion relationships. Let's carry out an analysis of the situation, for deliveries the planes fly horizontally and we assume that the wind speed is zero or very small.

Before starting, let's reduce the magnitudes to the SI system

         v₀ = 250 miles/h (5280 ft / 1 mile) (1h / 3600s) = 366.67 ft/s

         y = 2650 m

Let's start by looking for the time it takes for the load to reach the ground.

         y = y₀ + v_{oy} t - ½ g t²

in this case when it reaches the ground its height is zero and as the plane flies horizontally the vertical speed is zero

         0 = y₀ + 0 - ½ g t2

          t = \sqrt{ \frac{2y_o}{g} }

          t = √(2 2650/9.8)

          t = 23.26 s

this is the horizontal scrolling time

          x = v₀ t

          x = 366.67  23.26

          x = 8527 m

the speed at the point of arrival is

         v_y = v_{oy} - g t = 0 - gt

         v_y = - 9.8 23.26

         v_y = -227.95 m / s

Module and angle form

        v = \sqrt{v_x^2 + v_y^2}

         v = √(366.67² + 227.95²)

        v = 431.75 m / s

         θ = tan⁻¹ (v_y / vₓ)

         θ = tan⁻¹ (227.95 / 366.67)

         θ = - 31.97º

measured clockwise from x axis

We see that there must be a mechanism to reduce this speed and the merchandise is not damaged.

2) second scenario. A catapult located at the position x₀ = -400m y₀ = -50m with a launch angle of θ = 50º

we look for the components of speed

           cos θ = v₀ₓ / v₀

           sin θ = v_{oy} / v₀

            v₀ₓ = v₀ cos θ

            v_{oy} = v₀ sin θ

we look for the time for the arrival point that has coordinates x = 0, y = 0

            y = y₀ + v_{oy} t - ½ g t²

            0 = y₀ + vo sin θ t - ½ g t²

            0 = -50 + vo sin 50 t - ½ 9.8 t²

            x = x₀ + v₀ₓ t

            0 = x₀ + vo cos θ t

            0 = -400 + vo cos 50 t

podemos ver que tenemos un sistema de dos ecuación con dos incógnitas

          50 = 0,766 vo t – 4,9 t²

          400 =   0,643 vo t

resolved

          50 = 0,766 ( \frac{400}{0.643 \ t}) t – 4,9 t²

          50 = 476,52 t – 4,9 t²

          t² – 97,25 t + 10,2 = 0

we solve the quadratic equation

         t = [97.25 ± \sqrt{97.25^2 - 4 \ 10.2}] / 2

         t = 97.25 ±97.04] 2

         t₁ = 97.145 s

         t₂ = 0.1 s≈0

the correct time is t1 the other time is the time to the launch point,

         t = 97.145 s

let's find the initial velocity

         x = x₀ + v₀ cos 50 t

         0 = -400 + v₀ cos 50 97.145

         v₀ = 400 / 62.44

         v₀ = 6.4 m / s

5 0
3 years ago
X rays of wavelength 0.0169 nm are directed in the positive direction of an x axis onto a target containing loosely bound electr
mamaluj [8]

Answer:

a) 4.04*10^-12m

b) 0.0209nm

c) 0.253MeV

Explanation:

The formula for Compton's scattering is given by:

\Delta \lambda=\lambda_f-\lambda_i=\frac{h}{m_oc}(1-cos\theta)

where h is the Planck's constant, m is the mass of the electron and c is the speed of light.

a) by replacing in the formula you obtain the Compton shift:

\Delta \lambda=\frac{6.62*10^{-34}Js}{(9.1*10^{-31}kg)(3*10^8m/s)}(1-cos132\°)=4.04*10^{-12}m

b) The change in photon energy is given by:

\Delta E=E_f-E_i=h\frac{c}{\lambda_f}-h\frac{c}{\lambda_i}=hc(\frac{1}{\lambda_f}-\frac{1}{\lambda_i})\\\\\lambda_f=4.04*10^{-12}m +\lambda_i=4.04*10^{-12}m+(0.0169*10^{-9}m)=2.09*10^{-11}m=0.0209nm

c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.

P=\frac{h}{\lambda_e}=\frac{6.62*10^{-34}Js}{2.43*10^{-12}m}=2.72*10^{-22}kgm\\

E_e=\frac{p^2}{2m_e}=\frac{(2.72*10^{-22}kgm)^2}{2(9.1*10^{-31}kg)}=4.06*10^{-14}J\\\\1J=6.242*10^{18}eV\\\\E_e=4.06*10^{-14}(6.242*10^{18}eV)=0.253MeV

5 0
4 years ago
Other questions:
  • Write in powers of 10 notation: 3 trillion; five-thousandths; 730,000,000,000,000; 0.000000000082.
    12·1 answer
  • While standing in a low tunnel, you raise your arms and push against the ceiling with a force of 100 n. your mass is 70 kg. what
    8·1 answer
  • A sound wave travels at 330 m/sec and has a wavelength of 2 meters. Calculate its frequency and period.
    15·2 answers
  • Tim is riding a bike at a velocity of 10m/s north. As he starts to climb a hill, his velocity decreases to 5 m/s north. Is the a
    7·1 answer
  • The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid.
    5·1 answer
  • A pesticide kills insects by disabling the ribosomes in their cells.
    9·2 answers
  • COMPLETE THE SENTENCE:<br><br> "A sustainable material is ......
    6·2 answers
  • Which statement about moons is incorrect?
    6·2 answers
  • A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length. (a) What is
    13·1 answer
  • Someone talk o me I’m bored
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!