Answer:
The speed of the skier after moving 100 m up the slope are of V= 25.23 m/s.
Explanation:
F= 280 N
m= 80 kg
α= 12º
μ= 0.15
d= 100m
g= 9,8 m/s²
N= m*g*sin(α)
N= 163 Newtons
Fr= μ * N
Fr= 24.45 Newtons
∑F= m*a
a= (280N - 24.5N) / 80kg
a= 3.19 m/s²
d= a * t² / 2
t=√(2*d/a)
t= 7.91 sec
V= a* t
V= 3.19 m/s² * 7.91 s
V= 25.23 m/s
Answer:
detecting and indicating an electric current
Answer:
<em>The distance is now 4d</em>
Explanation:
<u>Mechanical Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
The acceleration can be calculated by solving for a:

Once we know the acceleration, we can calculate the distance traveled by the block as follows:

If the block starts from rest, vo=0:

Substituting the value of the acceleration:

Simplifying:

When a force F'=4F is applied and assuming the mass is the same, the new acceleration is:

And the distance is now:

Dividing d'/d:

Simplifying:

Thus:
d' = 4d
The distance is now 4d
Answer:
Explanation:
The equation for this is
where f is the frequency, v is the velocity, and lambda is the wavelength. Filling in:
and
which means that
the wavelength is 1.37 m, rounded to the correct number of significant digits.