1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
15

A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows: ρ(r)=ρ0(1−r/r) for r

≤r ρ(r)=0 for r≥r where ρ0=3q/πr3 is a positive constant.
Physics
1 answer:
Nadusha1986 [10]3 years ago
4 0

A)<span>
dQ = ρ(r) * A * dr = ρ0(1 - r/R) (4πr²)dr = 4π * ρ0(r² - r³/R) dr 
which when integrated from 0 to r is 
total charge = 4π * ρ0 (r³/3 + r^4/(4R)) 
and when r = R our total charge is 
total charge = 4π*ρ0(R³/3 + R³/4) = 4π*ρ0*R³/12 = π*ρ0*R³ / 3 
and after substituting ρ0 = 3Q / πR³ we have 
total charge = Q ◄ 

B) E = kQ/d² 
since the distribution is symmetric spherically 

C) dE = k*dq/r² = k*4π*ρ0(r² - r³/R)dr / r² = k*4π*ρ0(1 - r/R)dr 
so 
E(r) = k*4π*ρ0*(r - r²/(2R)) from zero to r is 
and after substituting for ρ0 is 
E(r) = k*4π*3Q(r - r²/(2R)) / πR³ = 12kQ(r/R³ - r²/(2R^4)) 
which could be expressed other ways. 

D) dE/dr = 0 = 12kQ(1/R³ - r/R^4) means that 
r = R for a min/max (and we know it's a max since r = 0 is a min). 

<span>E) E = 12kQ(R/R³ - R²/(2R^4)) = 12kQ / 2R² = 6kQ / R² </span></span>

You might be interested in
Can you walk on the moon
morpeh [17]
You can. But the gravity on the moon is 1/6th the gravity on Earth. This means 300 lbs man would only weigh 50 lbs. 
7 0
3 years ago
Read 2 more answers
You and a partner sit on the floor and stretch out a coiled spring to a length of 7.2 meters. You shake the coil so you
vekshin1

Answer:

Approximately 5.9\; {\rm m\cdot s^{-1}} (assuming that the partner is holding the other end of the coil stationary.)

Explanation:

In a standing wave, an antinode is a point that moves with maximal amplitude, while a node is a point that does not move at all. There is an antinode between every two adjacent nodes. Likewise, there is a node between every two adjacent antinodes.

The side of the spring that is being shaken moving with maximal amplitude. Hence, that point on this spring would also be an antinode. In contrast, the side of the spring that is held still (does not move at all) would be a node.

There would be a node between:

  • the antinode at the end of the spring that is being shaken, and
  • the antinode between the two ends of this spring.

Overall, the nodes and antinodes on this spring would be:

  • node at the end that is being held still,
  • antinode (as mentioned in the question),
  • node (inferred, not mentioned in the question), and
  • antinode at the end that is being shaken.

The distance between two adjacent nodes is equal to one-half (that is, (1/2)) the wavelength of the wave. The distance between a node and an adjacent antinode is one-quarter (that is, (1/4)) of the wavelength of the wave.

Thus, if the wavelength of the wave in this question is \lambda, the length of this spring would be:

\displaystyle \frac{1}{2}\, \lambda + \frac{1}{4}\, \lambda = \frac{3}{4}\, \lambda.

The question states that the length of this coiled spring is 7.2\; {\rm m}. In other words, (3/4) \, \lambda = 7.2\; {\rm m}. The wavelength of this wave would be (7.2\; {\rm m}) / (3/4) = 9.6\; {\rm m}.

The frequency f of this wave is the number of cycles in unit time:

\begin{aligned} f &= \frac{10}{16.3\; {\rm s}} \approx 0.613\; {\rm s^{-1}}\end{aligned}.

Hence, the speed v of this wave would be:

\begin{aligned} v &= \lambda\, f \\ &=9.6\; {\rm m} \times 0.613\; {\rm s^{-1}} \\ &\approx 5.9\; {\rm m \cdot s^{-1}}\end{aligned}.

3 0
2 years ago
A graph that shows how position depends on time is a?
AfilCa [17]

Hello!

A graph that shows how position is depending on time is known as a Position Time Graph.

This is a graph used in Physics to help us understand how motion (positive/negative velocity) changes over a period of time. Motion can be seen in two ways on this graph: constant velocity and changing velocity, otherwise known as acceleration.

Hopes this help you answer your question!

8 0
3 years ago
A piano wire with mass 2.60g and length 84.0 cm is stretched with a tension of 25.0 N. A wave with frequency 120.0 Hz and amplit
likoan [24]

Answer:

Power will be 0.2023 watt

And when amplitude is halved then power will be 0.0505 watt

Explanation:

We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg

Length of wire l = 84 cm = 0.84 m

So mass density \mu =\frac{m}{l}=\frac{0.0026}{0.84}=0.0031kg/m

Tension in the wire T = 25 N

Frequency f = 120 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 120=753.6rad/sec

And amplitude A = 1.6 mm = 0.0016 m

We have to find the generated power

Power is given by P=\frac{1}{2}\sqrt{\mu T}\omega ^2A^2=\frac{1}{2}\times \sqrt{0.0031\times 25}\times 753.6^2\times 0.0016^2=0.2023watt

From the relation we can see that power P\ \propto\ A^2

So if amplitude is halved then power will be \frac{1}{4} times

So power will be equal to \frac{0.2023}{2}=0.0505watt

4 0
3 years ago
What features form where two continental plate come together
ExtremeBDS [4]
Ridges, mountains, and volcanoes!

3 0
3 years ago
Read 2 more answers
Other questions:
  • A heated piece of metal cools according to the function c(x) = (.5)^(x _ 11), where x is measured in hours. A device is added th
    8·2 answers
  • Which avtivties belongs on top of physical activity pyramid
    15·2 answers
  • What is electric charge ?​
    9·2 answers
  • Calculate equivalent resistance in the following between points P and Q​
    12·2 answers
  • Mess up my notes please part 1
    9·2 answers
  • Can someone help me please
    12·1 answer
  • The food web for a particular ecosystem is shown below.
    8·2 answers
  • The tiny planet Mercury has a radius of 2400 km and a mass of 3.3 times 10^23 kg.
    13·2 answers
  • The Ancient Roman economy did not make use of
    8·2 answers
  • What happens to heat energy after an object is cooled down lolololol asking for my bff
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!