Answer:
x(t) = -3sin2t
Explanation:
Given that
Spring force of, W = 720 N
Extension of the spring, s = 4 m
Attached mass to the spring, m = 45 kg
Velocity of, v = 6 m/s
The proper calculation is attached via the image below.
Final solution is x(t) = -3.sin2t
Peer review is important because it is used by scientists to decided which results should be published in a scientific journal
"60 kg" is not a weight. It's a mass, and it's always the same
no matter where the object goes.
The weight of the object is
(mass) x (gravity in the place where the object is) .
On the surface of the Earth,
Weight = (60 kg) x (9.8 m/s²)
= 588 Newtons.
Now, the force of gravity varies as the inverse of the square of the distance from the center of the Earth.
On the surface, the distance from the center of the Earth is 1R.
So if you move out to 5R from the center, the gravity out there is
(1R/5R)² = (1/5)² = 1/25 = 0.04 of its value on the surface.
The object's weight would also be 0.04 of its weight on the surface.
(0.04) x (588 Newtons) = 23.52 Newtons.
Again, the object's mass is still 60 kg out there.
___________________________________________
If you have a textbook, or handout material, or a lesson DVD,
or a teacher, or an on-line unit, that says the object "weighs"
60 kilograms, then you should be raising a holy stink.
You are being planted with sloppy, inaccurate, misleading
information, and it's going to be YOUR problem to UN-learn it later.
They owe you better material.
Ways to increase friction
<span>- increase the roughness of the contact materials </span>
<span>- increase the pressure on the contact </span>
<span>Ways to decrease friction </span>
<span>- float the moving body on air </span>
<span>- suck out any air </span>
Answer:
V = V0 + a t
V = 75 - 9.8 * 3 = 45.6 m/s