Answer:
14.9 g is the ideal yield of Cu(NO₃)₂
Explanation:
Reactants for the reaction: Cu and AgNO₃
Products: Copper nitrate and Ag
The balanced reaction is: Cu(s) + 2AgNO₃(aq) → 2Ag (s) + Cu(NO₃)₂
As the silver nitrate is in excess, the Cu will be the limiting reagent.
We convert the mass to moles → 5.05 g . 1 mol/ 63.55 g = 0.0794 moles
Ratio is 1:1, so 0.0794 moles will produce 0.0794 moles of Cupper(II) nitrate. We convert the moles to mass, and that value will be the theoretical yield.
0.0794 mol . 187.55 g /1 mol = of Cu(NO₃)₂
I need the following option
The given elements put into an equation using their symbols are as follows:
Pb +

=

+ Ag
Since there are 2 Pb on the right side of the equation, you would change the coefficient of Pb on the left side to 2:
2Pb +

=

+ Ag
Since there are 2 Acetate on the right side of the equation, you would change the coefficient of Silver Acetate on the left side to 2:
2Pb +

=

+ Ag
Now there are 2 Silver on the left side, so you change the coefficient of Silver on the right side to 2:
2Pb +

=

+ 2Ag
That is your final equation
The coefficients are 2 + 2 = 1 + 2
the force between the electron and the proton.
a) Use F = k * q1 * q2 / d²
where k = 8.99e9 N·m²/C²
and q1 = -1.602e-19 C (electron)
and q2 = 1.602e-19 C (proton)
and d = distance between point charges = 0.53e-10 m
The negative result indicates "attraction".
the radial acceleration of the electron.
b) Here, just use F = ma
where F was found above, and
m = mass of electron = 9.11e-31kg, if memory serves
a = radial acceleration
the speed of the electron.
c) Now use a = v² / r
where a was found above
and r was given
<span> the period of the circular motion.</span>
d) period T = 2π / ω = 2πr / v
where v was found above
and r was given