Answer:
<h2>89,460 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question we have
mass = 8.52 × 10,500
We have the final answer as
<h3>89,460 g</h3>
Hope this helps you
Answer:
b and d
a, c, e, and f
Explanation:
Ideal gas law:
PV = nRT
Solving for temperature:
T = PV / (nR)
Therefore, temperature is directly proportional to pressure and volume, and inversely proportional to the number of molecules.
T = k PV / N
Let's say that T₀ is the temperature when P = 100 kPa, V = 4 L, and N = 6×10²³.
a) T = k PV / N = T₀
b) T = k (2P) V / N = 2T₀
c) T = k (P/2) (2V) / N = T₀
d) T = k PV / (N/2) = 2T₀
e) T = k P (V/2) / (N/2) = T₀
f) T = k (P/2) V / (N/2) = T₀
b and d have the highest temperature,
a, c, e, and f have the lowest temperature.
The answer is <em>B. 5/4</em> or <em>1.25</em>
Answer:
r = 6.4 cm
Explanation:
F = GMm/r²
r = √(GMm/F)
r = √((6.674e-11)(6.2e5)(13e3)/130)
r = 0.06432... m
Those are some high density materials!
Answer:
33.516 kJ
Explanation:
Potential energy is given by:
PE = mgh
Where m is the mass, g is acceleration due to gravity, and h is the height. In this case:
PE = 38kg x 9.8m/s^2 x 90m = 33516 kg m^2/s^2 = 33516 J = 33.516 kJ