1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
9966 [12]
3 years ago
13

A car travels west for 240 km in 4 h. what is the car's velocity?

Physics
2 answers:
nalin [4]3 years ago
4 0
The velocity is 60 because you divide your distance by your time (240÷4=60)
Mila [183]3 years ago
4 0
You convert 240 km to meters: that would be 240 divided by 1,000 to reach your answer of .24 meters. Now, you would want distance over time, so .24 divided by 4 would be .06. Your velocity is .06
You might be interested in
If a proton were released from rest at the sphere's surface, what would be its speed far from the sphere?
balu736 [363]

Let the sphere is having charge Q and radius R

Now if the proton is released from rest

By energy conservation we can say

U = K

\frac{kQe}{R} = \frac{1}{2}mv^2

\frac{2kQe}{mR} = v^2

now take square root of both sides

v =\sqrt{\frac{2kQe}{mR}}

so the proton will move by above speed and

here Q = charge on the sphere

R = radius of sphere

k = 9 * 10^9


5 0
3 years ago
Read 2 more answers
Derive the equation of motion of the block of mass m1 in terms of its displacement x. The friction between the block and the sur
Alenkasestr [34]

Answer:

the equivalent mass : m_e = m_1+m_2+\frac{I}{R^2}

the equation of the motion of the block of mass m_1 in terms of its displacement is = (m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

Explanation:

Let use m₁ to represent the mass of the block and m₂ to represent the mass of the cylinder

The radius of the cylinder  be = R

The distance between the center of the pulley to center of the block to be = x

Also, the angles of inclinations of the cylinder and the block with respect to the ground to be \phi and \beta respectively.

The velocity of the block to be = v

The equivalent mass of the system = m_e

In the terms of the equivalent mass, the kinetic energy of the system can be written as:

K.E = \frac{1}{2} m_ev^2       --------------- equation (1)

The angular velocity of the cylinder = \omega  :  &

The inertia of the cylinder about its center to be = I

The angular velocity of the cylinder can be written as:

v = \omega R

\omega =\frac{v}{R}

The kinetic energy of the system in terms of individual mass can be written as:

K.E = \frac{1}{2}m_1v^2+\frac{1}{2} m_2v^2+\frac{1}{2}I\omega^2

By replacing \omega with \frac{v}{R} ; we have:

K.E = \frac{1}{2}m_1v^2+\frac{1}{2} m_2v^2+\frac{1}{2}I(\frac{v}{R})^2

K.E = \frac{1}{2}(m_1+ m_2+ \frac{I}{R} )v^2   ------------------ equation (2)

Equating both equation (1) and (2); we have:

m_e = m_1+m_2+\frac{I}{R^2}

Therefore, the equivalent mass : m_e = m_1+m_2+\frac{I}{R^2}    which is read as;

The equivalent mass is equal to the mass of the block plus the mass of the cylinder plus the inertia by  the square of the radius.

The expression for the force acting on equivalent mass due to the block is as follows:

f_{block }=m_1gsin \beta

Also; The expression for the force acting on equivalent mass due to the cylinder is as follows:

f_{cylinder} = m_2gsin \phi

Equating the above both equations; we have the equation of motion of the  equivalent system to be

m_e \bar x = f_{cylinder}-f_{block}

which can be written as follows from the previous derivations

(m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

Finally; the equation of the motion of the block of mass m_1 in terms of its displacement is = (m_1+m_2+\frac{I}{R^2} )(\bar x) = (m_2gsin \phi) -(m_1gsin \beta)

8 0
3 years ago
If a leaf falls from a tree, has work been done on the leaf? Explain.
mihalych1998 [28]

Answer:

Hope this helps!

5 0
2 years ago
A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizo
zloy xaker [14]

Solution :

Given :

Mass attached to the spring = 4 kg

Mass dropped = 6 kg

Force constant = 100 N/m

Initial amplitude = 2 m

Therefore,

a). $v_{initial} = A w$

          $= 2 \times \sqrt{\frac{100}{4}}$

          = 10 m/s

Final velocity, v at equilibrium position, v = 5 m/s

Now, $\frac{1}{2}(4+4)5^2 = \frac{1}{2} kA'$

A' = amplitude = 1.4142 m

b). $T=2 \pi \sqrt{\frac{m}{k}}$

    m' = 2m

    Hence, $T'=\sqrt2 T$

c). $\frac{\frac{1}{2}(4+4)5^2 + \frac{1}{2}\times 4 \times 10^2}{\frac{1}{2} \times 4 \times 10^2}$

  $=\frac{1}{2}$

Therefore, factor $=\frac{1}{2}$

Thus, the energy will change half times as the result of the collision.

7 0
3 years ago
A 30.0-kg girl in a swing is pushed to one side and held at rest by a horizontal force \vec{F} ​F ​⃗ ​​ so that the swing ropes
Virty [35]

Answer:

169.74 N

Explanation:

Given,

Mass of the girl = 30 Kg

angle of the rope with vertical, θ = 30°

equating the vertical component of the tension

vertical component of the tension is equal to the weight of the girl.

 T cos θ = m g

 T cos 30° = 30 x 9.8

 T = 339.48 N

Tension on the two ropes is equal to 339.48 N

Tension in each of the rope = T/2

                                           = 339.48/2 = 169.74 N

Hence, the tension in each of the rope is equal to 169.74 N

7 0
3 years ago
Other questions:
  • A 10.0 kilogram mass of iron on earth exerts a downward force of 98 Newtons. On the moon this same 10.0 kilograms of iron is wei
    9·2 answers
  • Please need help on this
    15·1 answer
  • One beam of electrons moves at right angles to a magnetic field. The force on these electrons is 4.9 × 10-14 newtons. A second b
    5·2 answers
  • Which is NOT true about oxygen-17 and oxygen-18?
    10·1 answer
  • PLS HELP ME. A 0.0780 kg lemming runs off a 5.36m high cliff at 4.84 m/s what is it potential energy when it lands?​
    5·1 answer
  • How is refraction and reflection different?
    11·2 answers
  • If a wave has a wavelength of 2m and a frequency of 500 hz, what is its speed
    13·1 answer
  • Forces can...
    13·1 answer
  • Which is an SI base unit that makes up part of the unit of energy?
    9·1 answer
  • As the people sing in church, the sound level everywhere inside is 101 dB . No sound is transmitted through the massive walls, b
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!