Answer:
d. intrusion
Explanation:
An intrusion is molten rock from the Earth's interior that squeezes into existing rock and cools. Folding Folding occurs when rock layers bend and buckle from Earth's internal forces.
V=r/t
Speed equals displacement over the time
V=100/9.92=10.08ms^-1
In this case the rubber raft has horizontal and vertical motion.
Considering vertical motion first.
We have displacement
, u = Initial velocity, t = time taken, a = acceleration.
In vertical motion
s = 1960 m, u = 0 m/s, a = 9.81 

So raft will take 20 seconds to reach ground.
Now considering horizontal motion of raft
u = 109 m/s, t = 20 s, a = 0
So 
So shipwreck was 2180 meter far away from the plane when the raft was dropped.
Answer:
R2 = 10.31Ω
Explanation:
For two resistors in parallel you have that the equivalent resistance is:
(1)
R1 = 13 Ω
R2 = ?
The equivalent resistance of the circuit can also be calculated by using the Ohm's law:
(2)
V: emf source voltage = 23 V
I: current = 4 A
You calculate the Req by using the equation (2):

Now, you can calculate the unknown resistor R2 by using the equation (1):

hence, the resistance of the unknown resistor is 10.31Ω
Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of hydrazine is 
The initial temperature is 
The final temperature is 
The specific heat capacity is ![c_h = 0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)](https://tex.z-dn.net/?f=c_h%20%20%3D%20%200.099%20%5BkJ%2F%28mol%20K%29%5D%20%3D%200.099%20%2A10%5E3%20J%2F%28mol%2FK%29)
The power available is 
The mass of the fuel is 
Generally the number of moles of hydrazine present is

=> 
=> 
Generally the quantity of heat energy needed is mathematically represented as
=>
=>
Generally the time taken is mathematically represented as

=> 
=> t = 2480505.6377 s
Converting to hours

=> 