Answer:
Wave X has a shorter wavelength.
Explanation:
The relation between the speed of a wave, its wavelength and frequency is given by :

It can be seen that the relationship between the frequency and wavelength is inverse.
In this problem, it is mentioned that two sound waves (wave X and wave Y) are moving through a medium at the same speed. The frequency of wave X is greater than wave Y. Then it would mean that wave X have shorter wavelength than wave Y (due to inverse relation).
Acceleration = final velocity - inital / time
a = 75-10 / 7
a = 65 / 7
a = 9.29 m/s^2
Answer:

Explanation:
<u>Average Acceleration
</u>
Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.
Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that.
</em>
When
, the graph shows a value of
When
, the object is at rest, 
We compute the average acceleration as




Answer:
0.0257259766982 m
Explanation:
= Atmospheric pressure = 101325 Pa
= Initial diameter = 1.5 cm
= Final diameter
= Density of water = 1000 kg/m³
h = Depth = 40 m
The pressure is

From ideal gas law we have

The diameter of the bubble is 0.0257259766982 m
Suppose car A is moving with a velocity Va, and car b with a velocity Vb,
According the principle of conservation of momentum:
Va x Ma + Vb x Mb = (Ma + Mb) V
V = (Va x Ma + Vb x Mb)/(Ma +Mb)
V = speed of cars after coupling
V = (Va x 20 mg + Vb x 15 mg)/(20 mg + 15 mg)
Put in the values of Va and Vb, and get the V