When red litmus paper comes into contact with any alkaline substance, it turns blue. Some examples of alkaline substances are ammonia gas, milk of magnesia, baking soda and limewater.
The speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
The angular momentum(L) of an electron moving in a circular path is given by the formula,
L = mvr ........(i)
We know that the radius of the path of an electron in a magnetic field is
r = mv/qB
Putting this value in equation (i),
L = mv x mv/qB
or L = (mv)^2/qB
Putting the given values in the above equation,
4 x 10^-25 = (9.1x10^-31)^2 x v^2/ 1.6 x 10^-19 x 1 x 10^-3
v comes out to be 8.88 x 10^7 m/s.
Hence, the speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
To know more about "angular momentum", refer to the following link:
brainly.com/question/15104254?referrer=searchResults
#SPJ4
Answer:
Efriction = 768.23 [kJ]
Explanation:
In order to solve this problem we must use the principle of energy conservation. Where it tells us that the energy of a system plus the work applied or performed by that system, will be equal to the energy in the final state. We have two states the initial at the time of the balloon jump and the final state when the parachutist lands.
We must identify the types of energy in each state, in the initial state there is only potential energy, since the reference level is in the ground, at the reference point the potential energy is zero. At the time of landing the parachutist will only have potential energy, since it reaches the reference level.
The friction force acts in the opposite direction to the movement, therefore it will have a negative sign.

where:

m = mass = 56 [kg]
h = elevation = 1400 [m]
v = velocity = 5.6 [m/s]
![(56*9.81*1400)-E_{friction}=\frac{1}{2}*56*(5.6)^{2}\\769104 -E_{friction}= 878.08 \\E_{friction}=769104-878.08\\E_{friction}=768226[J] = 768.23 [kJ]](https://tex.z-dn.net/?f=%2856%2A9.81%2A1400%29-E_%7Bfriction%7D%3D%5Cfrac%7B1%7D%7B2%7D%2A56%2A%285.6%29%5E%7B2%7D%5C%5C769104%20-E_%7Bfriction%7D%3D%20878.08%20%5C%5CE_%7Bfriction%7D%3D769104-878.08%5C%5CE_%7Bfriction%7D%3D768226%5BJ%5D%20%3D%20768.23%20%5BkJ%5D)
The answer would be energy, because all wave emitters give off at least one type of energy....