Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
Explanation:
Gravitational potential energy
= mgh
= (2kg)(10N/kg)(5m)
= 100J.
1) <span>The function of the electron transport chain is to pump protons in the mitochondrion inter-membrane, thus building up a proton gradient. This gradient will allow the ATP syntheses</span><span>.</span>
2) Why we need oxygen for the electron transport chain:
At the end of the electron transport chain is the Oxygen that will accept
electrons and picks up protons to form water. If the oxygen molecule is not there the electron transport chain
will stop running, and ATP will no longer be produced. Basically, we need the oxygen to produce more ATP.
Using the formula: ΔY = V₀y * t + (1/2) * ay * t²
Solve for time and get: 1.968s
Then use: v = d/t in the x-direction and get: d = 3.936