This means that we shouldn't imagine electrons as single objects going around the atom. Instead, all we know is the probability of finding an electron at a particular location. What we end up with is something called an electron cloud. An electron cloud is an area of space in which an electron is likely to be found. It's like a 3-D graph showing the probability of finding the electron at each location in space. Quantum mechanics also tells us that a particle has certain numbers (called quantum numbers) that represent its properties. Just like how materials can be hard or soft, shiny or dull, particles have numbers to describe the properties. These include a particle's orbital quantum numbers, magnetic quantum number, and its spin. No two electrons in an atom can have exactly the same quantum numbers. Orbital quantum numbers tell you what energy level the electron is in. In the Bohr model, this represents how high the orbit is above the nucleus; higher orbits have more energy. The first orbit is n=1, the second is n=2, and so on. The magnetic quantum number is just a number that represents which direction the electron is pointing. The other important quantum mechanical property, called spin, is related to the fact that electrons come in pairs. In each pair, one electron spins one way (with a spin of one half), and the other electron spins the other way (with a spin of negative one half). Two electrons with the same spin cannot exist as a pair. This might seem kind of random, but it has effects in terms of how magnetic material is. Materials that have unpaired electrons are more likely to be magnetic
The Hooke's law is a principal of physics that states that the force needed to extend or compress a spring by some distance x scales linearly with respect to that distance.
The sun is abiotic-Brainly.com
Answer:
A. polymerization
Explanation:
Synthetic plastics are made by linking many simple carbon molecules together to form much larger molecules. This process is called polymerization.
Synthetic or artifical giant molecules consists of synthetic polymers such as plastics, elastomers etc. They are made up of simple monomers which links to form the complex and giant structure.
Monomers are the simplest unit of polymers. Polymers have very great sizes. The size mkaes their structure quite complex. This makes the molecules more disposed in a regular pattern with respect to one another.
The complexity of structure and the attendant effects accounts for the properties and uses that makes synthetic molecules very unique. For example, plastics can be extruded as sheets, pipes and or moulded into other objects.
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²