<u>Answer:</u> The moles of water produced are 1.54 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethane = 15.42 g
Molar mass of ethane = 30.07 g/mol
Putting values in above equation, we get:

The chemical equation for the combustion of ethane follows:

By Stoichiometry of the reaction:
2 moles of ethane produces 6 moles of water
So, 0.513 moles of ethane will produce =
of water
Hence, the moles of water produced are 1.54 moles.
The statement that best explains why magnesium and chlorine combine in a 1:2 ratio is; Magnesium has two valence electrons, and chlorine can accept one electron in its outer shell.
The number of electrons that an atom of an element has in its outermost shell determines the chemical formula of the compounds formed by atoms such elements.
Magnesium is in group 2, as such it has two electrons in its outermost shell while chlorine in group 17 only accepts one electron in its outermost shell. This one electron will give chlorine an inert gas configuration while the loss of two electrons give magnesium an inert gas configuration.
Therefore; The compound MgCl2 is formed in the ratio of 1:2 because Magnesium has two valence electrons, and chlorine can accept one electron in its outer shell.
Learn more: brainly.com/question/11527546
Aluminium Hydroxide on decomposition produces Al₂O₃ and Water vapors.
<span> 2 Al(OH)</span>₃ → Al₂O₃ + 3 H₂O
According to equation at STP,
67.2 L (3 moles) of H₂O is produced by = 78 g of Al(OH)₃
So,
65.0 L of H₂O will be produced by = X g of Al(OH)₃
Solving for X,
X = (65.0 L × 78 g) ÷ 67.2 L
X =
75.44 g of Al(OH)₂Result: 75.44 g of Al(OH)₂ is needed to decompose in order to produce 65.0 L of water at STP in stoichiometry
Answer:
4.704J
Explanation:
The following data were obtained from the question:
m = 0.080kg
h = 6.0m
g = 9.8m/s^2
P.E =?
P.E = mgh
P.E = 0.08 x 9.8 x 6
P.E = 4.704J
Therefore, the potential energy of the robin is 4.704J
Answer: B. Surface Tension
Explanation:
It is the tension of the surface film of a liquid caused by the attraction of the particles in the surface layer by the bulk of the liquid, which tends to minimize surface area.