Answer:
B. Adding more protons to a positively charged body until the number of protons matches the number of electrons.
Explanation:
Answer: a) pH = 13.00 : basic
b)
: basic
c) pOH = 5.00 : basic
d)
: acidic
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
Acids have pH ranging from 1 to 6.9 and bases have pH ranging from 7.1 to 14.Neutral substances have pH of 7.
a) pH = 13.00
As pH is more than 7, the solution is basic.
b) ![[H_3O^+]=1.0\times 10^{-12}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D1.0%5Ctimes%2010%5E%7B-12%7D)
Putting in the values:
![pH=-\log[1.0\times 10^{-12}]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B1.0%5Ctimes%2010%5E%7B-12%7D%5D)

As pH is more than 7, the solution is basic.
c) pOH = 5.00


As pH is more than 7, the solution is basic.
d) ![[OH^-]=1.0\times 10^{-9}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.0%5Ctimes%2010%5E%7B-9%7D)
Putting in the values:
![pOH=-\log[1.0\times 10^{-9}]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5B1.0%5Ctimes%2010%5E%7B-9%7D%5D)



As pH is less than 7, the solution is acidic.
<h2>
Answer:</h2>
390 g KNO₃
<h2>
General Formulas and Concepts:</h2><h3><u>Chemistry</u></h3>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3><u>Math</u></h3>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h2>
Explanation:</h2>
<u>Step 1: Define</u>
2.3 × 10²⁴ formula units KNO₃
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g.mol
Molar Mass of KNO₃ - 39.10 + 14.01 + 3(16.00) = 101.11 g/mol
<u>Step 3: Convert</u>
<u />
= 386.172 g KNO₃
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules and round.</em>
386.172 g KNO₃ ≈ 390 g KNO₃