Answer:
Basically, fragrances reach other person through sense of smell. So, the strength of the fragrances depends a lot on its evaporation, which is strongly related to the boiling point. Esters with higher molecular weight do not have a strong fragrance because it has a higher boiling point.
The answer should be "by convection" not by radiation.
The reason that some of the elements of period three and beyond are steady in spite of not sticking to the octet rule is due to the fact of possessing the tendency of forming large size, and a tendency of making more than four bonds. For example, sulfur, it belongs to period 3 and is big enough to hold six fluorine atoms as can be seen in the molecule SF₆, while the second period of an element like nitrogen may not be big to comprise 6 fluorine atoms.
The existence of unoccupied d orbitals are accessible for bonding for period 3 elements and beyond, the size plays a prime function than the tendency to produce more bonds. Hence, the suggestion of the second friend is correct.
Google said
How many electrons fit in each shell around an atom?
The maximum number of electrons that can occupy a specific energy level can be found using the following formula:
Electron Capacity = 2n2
The variable n represents the Principal Quantum Number, the number of the energy level in question.
Energy Level
(Principal Quantum Number) Shell Letter Electron Capacity
1 K 2
2 L 8
3 M 18
4 N 32
5 O 50
6 P 72
Keep in mind that an energy level need not be completely filled before electrons begin to fill the next level. You should always use the Periodic Table of Elements to check an element's electron configuration table if you need to know exactly how many electrons are in each level.
Density is Mass divided by volume.