Answer:
1) SO₄
²⁻ : (+6)
H₂S : (-2)
Explanation:
a) <u>Sulfate reducers</u> are widespread in muds and other sediments, water-logged soils, etc., environments that contain SO₄ ²⁻ and become anoxic as a result of microbial decomposition.
Sulfate (SO₄ ²⁻), the most oxidized form of sulfur (+6), <u>is reduced</u> by these
sulfate-reducing bacteria. The end product of sulfate reduction is hydrogen sulfide, H₂S, (oxidation number -2) an important natural product that participates in many biogeochemical processes. The H₂S they generate is responsible for the pungent smell (like that of rotten eggs) often encountered near coastal ecosystems. When sulfate-reducing bacteria grow, the H₂S formed from SO₄ ²⁻ reduction combines with the ferrous iron to form black, insoluble ferrous sulfide, which is not toxic. This is important for the conservation of the environment.
b) The net ionic equation under acidic conditions is:
4 H₂ + SO₄²⁻ + H⁺ → HS⁻ + 4 H₂O
Global reaction: SO₄²⁻ + 2H⁺ → H₂S + O₂
The overall charge of an atom is positive if the number of electrons is less than the number of protons. Electrons are negatively charged particles while protons are positively charged particles. If there are less electrons as compared to the number of protons in an atom, then naturally the overall charge of the atom would be positive since there are excess protons. Another case would be that the overall charge of an atom is negative if the number of electrons is greater than the number of protons. An atom having more electrons than the number of the protons present would lead to a negative value of the charge since there are excess electrons.
Answer:
2.7724 g
Explanation:
Mass of pre- 1892 pennies = 3.1 g
Abundance = 45.4 %
Mass of post 1892 pennies = 2.5 g
Abundance = 100 - 45.4 = 54.6 %
The average mass is given as = ( 3.1 g * 45.4 / 100) + (2.5g * 54.6 / 100)
Average Mass = 3.1 * 0.454 + 2.5 * 0.546
Average Mass = 1.4074 + 1.365 = 2.7724 g
- The student weighs out 0.0422 grams of the metal magnesium, thus we can figure that the more's, the magnesium he used, is the mass of the magnesium over the more mass, which is 0.024422.
- That is approximately 0.001758.
- Furthermore, it claims that too much hydrochloric acid causes the metal magnesium to react, producing hydrogen gas.
- The volume of collected gas is 43.9 cc, the mastic pressure is 22 cc, and a sample of hydrogen gas is collected over water in a meter.
<h3>Is it true that calculations made utilizing experimental and gathered data result in a percent error? </h3>
- Consequently, we are aware that magnesium and chloride react.
- We create 1 as the reaction ratio is 1:2.
- The hydrogen and 1 are more.
- Magnesium chloride is more.
- Therefore, based on this equation, we can infer that the amount of hydrogen that would be created in this scenario is greater than the amount of magnesium present here, or 0.001758 more.
- Among hydrogen, there is.
- \Once we convert the temperature from 32 Celsius to kelvin, we can tell you that the temperature is actually about 5.15 kelvin.
- The gas has a volume of 43 in m, which is equal to 0.0439 liter and indicates that the pressure is approximately 832 millimeter.
- Mercury, which is 2 times 13332 plus ca, or roughly 110922.24 par, is a mathematical constant.
- So, in this instance, we are aware that p v = n r t.
- The r in this case equals p v over n t, thus we want to determine the r.
- So p is 110922.24. The temperature is 305.15 and the V is 0.04 over the n is 0.001758.
- Let's proceed with the calculations right now.
- In this instance, you will discover that the solution is 9.077 times 10; that is all there is to it.
To learn more about Magnesium chloride reactions visit:
brainly.com/question/27891157
#SPJ4
Answer:
I think it would be:
NaCO3 (s)-->Na2O (s) + CO2 (g)