Greenhouse effect is the process of trapping sun radiation in the earth surface, so as to make the planet warm. It is a natural phenomenon in which sun rays that enters the earth surface are re-radiated into the earth surface causing the heat trap in the earth.
In similar manner, green house also trap radiation inside the glass house. The sun rays once reach inside the glass house, strike on plants and objects and reflected back. For entire radiation to escape from the green house, the heat flow between the two points must be proportional to the temperature difference and thermal conductivity. The glass of which the green house are made up, have low thermal conductivity. So, temperature must rise inside glass house so to maintain the heat flow rate of incoming and outgoing radiation.
The green house glass are insulated and they trap the infrared emitted by the objects inside the green house from escaping outside. Since the infrared have longer wave lengths, it is released slowly.
Also, the thermal energy inside the glass house are transferred by convection process. But the glass walls and roof act as insulator, keeping the radiant energy from escaping outside the green house.<span />
I think the answer is C but don’t quote me on that
Answer:

Explanation:
First of all we need to calculate the heat that the water in the cooler is able to release:

Where:
- Cp is the mass heat capacity of water
- V is the volume
is the density


To calculate the mass of CO2 that sublimes:

Knowing that the enthalpy of sublimation for the CO2 is: 


Answer:
Spiral Galaxy
Explanation:
There are four main categories of galaxies: elliptical, spiral, barred spiral, and irregular. These types of galaxies are further divided into subcategories while at the same time other types of galaxies exist based on their size and other unique features. The most common type of galaxy found throughout the universe is the spiral galaxy.
Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>