An individual is hospitalized and the initial blood work indicates high levels of
in the blood and a pH of 7. 47. This would indicate the individual probably has compensated respiratory acidosis.
A chronic illness usually leads to compensated respiratory acidosis because the kidneys have time to adjust to the delayed onset. Even if the
is elevated in a compensated respiratory acidosis, the pH is within the usual range.
The kidneys counteract a respiratory acidosis by increasing the amount of
that tubular cells reabsorb from the tubular fluid, the amount of
that collecting duct cells secrete while also producing
, and the amount of
buffer that is formed through ammoniagenesis.
Respiratory acidosis is frequently brought on by hypoventilation as a result of: breathing depression , paralysis of the respiratory muscles, diseases of the chest wall , abnormalities of the lung parenchyma and abdominal squeezing.
Learn more about Respiratory acidosis here;
brainly.com/question/9694207
#SPJ4
Answer:
it's a segment
Explanation:
it has multiple end points
Sodium is very reactive but it’s a metal, and the problem asks specifically for a non-metal.
Silicone is technically reactive, but not super reactive.
Argon is a nonmetal, however it is an inert gas. It doesn’t react with anything.
We’re left with Chlorine, which is a non-metal in group 7, a highly reactive group, on the periodic table.
This question is describing the following chemical reaction at equilibrium:

And provides the relative amounts of both A and B at 25 °C and 75 °C, this means the equilibrium expressions and equilibrium constants can be written as:

Thus, by recalling the Van't Hoff's equation, we can write:

Hence, we solve for the enthalpy change as follows:

Finally, we plug in the numbers to obtain:
![\Delta H=\frac{-8.314\frac{J}{mol*K} *ln(0.25/9)}{[\frac{1}{(75+273.15)K} -\frac{1}{(25+273.15)K} ] } \\\\\\\Delta H=4,785.1\frac{J}{mol}](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Cfrac%7B-8.314%5Cfrac%7BJ%7D%7Bmol%2AK%7D%20%2Aln%280.25%2F9%29%7D%7B%5B%5Cfrac%7B1%7D%7B%2875%2B273.15%29K%7D%20-%5Cfrac%7B1%7D%7B%2825%2B273.15%29K%7D%20%5D%20%7D%20%5C%5C%5C%5C%5C%5C%5CDelta%20H%3D4%2C785.1%5Cfrac%7BJ%7D%7Bmol%7D)
Learn more:
Answer:
hope this help by the way found off of yahoo
Explanation:
Calculate the number of grams of nitrogen dioxide that are produced from
4 moles of nitric oxide.
2NO(g) + O2(g) -->2NO2(g)
I really need help with this... I need to know how to work it too... I can balance it out but not sure about grams... This is it balanced out with 4 moles of nitric oxide
4NO(g) + 2O2(g) ->4NO2(g) please help and explain i want to learn this