Answer: Temperature is an example of a quantitative variable
Explanation:
A quantitative variable is defined as :
- A variable that can assume a numerical value .
- It can be ordered with respect to either magnitude or dimensions.
- It is further classified into two types : interval scale and ratio scale.
Temperature comes under interval scale , because interval scale has no zero point.
For example : A 0° C Celsius does not interpret that there is no temperature.
Therefore , Temperature is an example of a quantitative variable.
Hence, the correct answer is "quantitative variable"
<u>Answer:</u>
<u>For A:</u> The
for the given reaction is 
<u>For B:</u> The
for the given reaction is 1642.
<u>Explanation:</u>
The given chemical reaction follows:

The expression of
for the above reaction follows:

We are given:

Putting values in above equation, we get:

Hence, the
for the given reaction is 
Relation of
with
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = 
= equilibrium constant in terms of concentration = ?
R = Gas constant = 
T = temperature = 500 K
= change in number of moles of gas particles = 
Putting values in above equation, we get:

Hence, the
for the given reaction is 1642.
Answer:
here:
Explanation:
The changes in temperature caused by a reaction, combined with the values of the specific heat and the mass of the reacting system, makes it possible to determine the heat of reaction.
Heat energy can be measured by observing how the temperature of a known mass of water (or other substance) changes when heat is added or removed. This is basically how most heats of reaction are determined. The reaction is carried out in some insulated container, where the heat absorbed or evolved by the reaction causes the temperature of the contents to change. This temperature change is measured and the amount of heat that caused the change is calculated by multiplying the temperature change by the heat capacity of the system.
The apparatus used to measure the temperature change for a reacting system is called a calorimeter (that is, a calorie meter). The science of using such a device and the data obtained with it is called calorimetry. The design of a calorimeter is not standard and different calorimeters are used for the amount of precision required. One very simple design used in many general chemistry labs is the styrofoam "coffee cup" calorimeter, which usually consists of two nested styrofoam cups.
When a reaction occurs at constant pressure inside a Styrofoam coffee-cup calorimeter, the enthalpy change involves heat, and little heat is lost to the lab (or gained from it). If the reaction evolves heat, for example, very nearly all of it stays inside the calorimeter, the amount of heat absorbed or evolved by the reaction is calculated.