The second thesis statement is perfect. It supports the claim and presents main idea.
Answer:
The amount in grams of hydrogen gas produced is 0.551 grams
Explanation:
The parameters given are;
Number of atoms of potassium, aₙ = 3.289 × 10²³ atoms
Chemical equation for the reaction is given as follows;
2K + 2H₂O
KOH + H₂
Avogadro's number,
, regarding the number of molecules or atom per mole is given s follows;
= 6.02 × 10²³ atoms/mole
Therefore;
The number of moles of potassium present = 3.289 × 10²³/(6.02 × 10²³) = 0.546 moles
2 moles of potassium produces one mole of hydrogen gas, therefore;
1 moles of potassium produces 1/2 mole of hydrogen gas, and 0.546 moles of potassium will produce 0.546/2 moles of hydrogen which is 0.273 moles of hydrogen gas
The molar mass of hydrogen gas = 2.016 grams
Therefore, 0.273 moles will have a mass of 0.273×2.016 = 0.551 grams.
The amount in grams of hydrogen gas produced = 0.551 grams.
The cloudiness of the eyes increases to a maximum and then decreases. This is because initially, after death, all the muscles relax, dilating the pupil. Some time later, rigor mortis sets in, contracting the pupil. Thus, the cloudiness fades.
Answer:
q = 38,5 kJ
Explanation:
In its melting point, at 0°C, water is liquid. The boiling point of water is 100°C. It is possible to estimate the heat you required to raise the temperature of water from 0°C to 100°C using:
q = C×m×ΔT
Where C is specific heat of water (4,184J/g°C), m is mass of water (92,0g) and ΔT is change in temperature (100°C-0°C = 100°C)
Replacing:
q = 4,184J/g°C×92,0g×100°C
q = 38493 J, in kilojoules:
<em>q = 38,5 kJ</em>
<em></em>
I hope it helps!