Answer:
Here's what I get
Explanation:
The ionization energy (I) is the energy required to remove an electron from an atom in the gaseous phase.
You can remove electrons in succession and measure the energies required as I₁, I₂, I₃, etc.
Thus, the removal of two electrons from Cu gives you Cu²⁺.
I found the ionization energies of Cu and used them to create those of Cu²⁺ (see table and graph below).
The electron configuration of Cu²⁺ is
Cu²⁺: 1s² 2s²2p⁶ 3s²3p⁶ 3d⁹
You can remove the nine 3d electrons and then there is a sudden jump from I₉ to I₁₀ as you break into the filled [Ar] configuration.
Similarly, there is big jump from I₁₇ to I₁₈ as you break into the filled [Ne] configuration.
the answer would be B. temperature
Answer:
0.112 M.
Explanation:
- Molarity is the no. of moles of solute in a 1.0 L of the solution.
M = n/V.
<em>M = (mass/molar mass)solute x (1000/V of the solution).</em>
mass = 127.62 g.
molar mass = 286.138 g/mol.
V of the solution = 4.0 L = 4000.0 mL.
<em>∴ M = (mass/molar mass)solute x (1000/V of the solution)</em> = (127.62 g / 286.138 g/mol) x (1000 / 4000.0 mL) = <em>0.1115 M ≅ 0.112 M.</em>
Answer:
<u><em>Pangaea</em></u>
<u><em>Alfred Wegner</em></u>
<u><em>plate tectonics</em></u>
Explanation:
What did Earth look like 250 million years ago? The continents of Earth were clustered together in formation that a scientist named<em> </em><u>Pangaea</u><u><em>.</em></u>The scientist that named "Pangaea" was a German scientist by the name of <u>Alfred Wegner.</u> He theorized that "Pangaea" split apart and the different landmasses, or continents, drifted to their current locations on the globe. Wegener's theories of plate movement became the basis for the development of the theory of <u>plate tectonics.</u>
<u>Answer:</u> 1.2 moles of carbon dioxide is produced for the given value of oxygen.
<u>Explanation:</u>
The chemical reaction for the combustion of acetylene follows the equation:

By stoichiometry of the reaction:
5 moles of oxygen produces 4 moles of carbon dioxide.
So, 1.5 moles of oxygen will produce =
of carbon dioxide.
Hence, 1.2 moles of carbon dioxide is produced for the given value of oxygen.