From the calculation, the molar mass of the solution is 141 g/mol.
<h3>What is the molar mass?</h3>
We know that;
ΔT = K m i
K = the freezing constant
m = molality of the solution
i = the Van't Hoft factor
The molality of the solution is obtained from;
m = ΔT/K i
m = 3.89/5.12 * 1
m = 0.76 m
Now;
0.76 = 26.7 /MM/0.250
0.76 = 26.7 /0.250MM
0.76 * 0.250MM = 26.7
MM= 26.7/0.76 * 0.250
MM = 141 g/mol
Learn more about molar mass:brainly.com/question/12127540?
#SPJ12
Answer:
empirical formula = C3H7
molecular formula = C6H14
Answer:
5.25 moles.
Explanation:
The decomposition reaction of NaN₃ is as follows :

We need to find how many grams of N₂ produced in the process.
From the above balanced chemical reaction, we conclude that the ratio of moles of sodium azide and nitrogen gas are 2 : 3.
2 moles of sodium azide decomposes to give 3 moles of nitrogen gas. So,
3.5 moles of sodium azide decomposes to give
moles of nitrogen gas.
Hence, the number of moles produced is 5.25 moles.
Answer:
Acceleration is the rate of change in velocity
Generally speaking, organic molecules tend to dissolve in solvents that have similar physical properties. A good rule of thumb is that "like dissolves like". Meaning, polar compounds can dissolve polar compounds and nonpolar compounds can dissolve nonpolar compounds.
To apply this to the current problem, we are told that the brushes are being cleaned with vegetable oil or mineral oil. In this case, the oils are used as solvents. In order for these solvents to be effective, the compounds they are trying to dissolve must be similar in structure and properties to other oils. Therefore, vegetable oil or mineral oil will be most effective in removing oil-based paints, as these will have the similar properties needed to dissolve in the oil solvents.