Answer:
<h3>0.69</h3>
Explanation:
Using the Newtons law of motion;

Fm is the moving force = 400N
Ff is the frictional force = μR
μ is the coefficient of kinetic friction
R is the reaction = mg
m is the mass
a is the acceleration
The equation becomes;

Hence the coefficient of kinetic friction between the box and floor is 0.69
Answer:
i think it would be increased water retention
Answer:
α = 
Explanation:
Applying the equations of motion to determine angular acceleration of the unit,
The sum of moments about O is equal to the product of angular acceleration and moment of inertia
∑Mo = Io*α
Taking the anticlockwise direction as positive moment,
= ( -(1150) + (1400) ) * (0.5 / 2) + ( (475) - (650) ) * (0.3 / 2) - F = Io*α
= 36.5 - (2.5 N.m) =
*α
NOTE: moment of inertia of the pulleys in this instance = 
Hence, 33.75 =
* α
Solving, α = 
Answer:
108.7 V
Explanation:
Two forces are acting on the particle:
- The external force, whose work is 
- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: 
where
q is the charge
is the potential difference
The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

and since the charge starts from rest,
, so the formula becomes

In this problem, we have
is the work done by the external force
is the charge
is the final kinetic energy
Solving the formula for
, we find

Answer:
elastic potential
Explanation:
the rubber band has the potential to snap back when released.