1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
3 years ago
8

A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards

the page as it falls. Which statement is correct?a. The current in the loop always flows in a clockwise direction. b·The current in the loop always flows in a counterclockwise direction. c. The current in the loop flows first in a clockwise, then in a counterclockwise direction. d. The current in the loop flows first in a counterclockwise, then in a clockwise direction. e. No current flows in the loop because both ends of the magnet move through the loop.
Physics
1 answer:
8_murik_8 [283]3 years ago
3 0

Answer:

<em>b. The current in the loop always flows in a counterclockwise direction.</em>

<em></em>

Explanation:

When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.

You might be interested in
A sphere is charged with electrons to -6 x 10^-6C. How many electrons make up this charge? The elemental charge is 1.6 x 10^-19
just olya [345]

Answer:

3.75*10^{-13}  electrons

Explanation:

The total charge Q is the sum of the charge of the N electrons contained in the sphere:

Q=N*q_{e}

q_{e}=-1.6*10^{-19}C    charge of a electron

We solve to find N:

N=\frac{Q}{q_{e}}=\frac{-6 x 10^{-6}}{-1.6 x 10^{-19}}=3.75*10^{-13}

7 0
3 years ago
Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o
polet [3.4K]

Answer:

a. charge C experiences the greatest net force, and charge B receives the smallest net force

b. ratio=9

Explanation:

<u>Electrostatic Force</u>

Two point-charges q_1 and q_2 separated a distance d will exert a force on each other of a magnitude given by the Coulomb's formula

\displaystyle F=\frac{k\ q_1\ q_2}{r^2}

Where k is the proportional constant of value

k=9*10^9\ N.m^2/c^2

The diagram provided in the question shows four identical charges (let's assume their value is Q) separated by identical distance (of value d). The force between the charges next to others is

\displaystyle F_1=\frac{k\ Q\ Q}{d^2}

\displaystyle F_1=\frac{k\ Q^2}{d^2}

The force between charges separated 2d is

\displaystyle F_2=\frac{k\ Q^2}{(2d)^2}

\displaystyle F_2=\frac{k\ Q^2}{4d^2}

And the force between the charges A and D is

\displaystyle F_3=\frac{k\ Q^2}{(3d)^2}

\displaystyle F_3=\frac{k\ Q^2}{9d^2}

Now, let's analyze each charge and the force applied to them by the others

Let's recall equally signed charges repel each other and differently signed charges attrach each other

Charge A. It receives force to the left from B and C and to the right from D

\displaystyle F_A=-F_1-F_2+F_3=-\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

\displaystyle F_A=\frac{k\ Q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_A=-\frac{41}{36}F_1

Charge B. It receives force to the right from A and D and to the left from C

\displaystyle F_B=F_1-F_1+F_2=\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{4d^2}

\displaystyle F_B=\frac{1}{4}F_1

Charge C. It receives forces to the right from all charges.

\displaystyle F_C=F_2+F_1+F_1=\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{d^2}

\displaystyle F_C=\frac{9}{4}F_1

Charge D. It receives forces to the left from all charges

\displaystyle F_D=-F_3-F_2-F_1=-\frac{k\ Q^2}{9d^2}-\frac{k\ Q^2}{4d^2}-\frac{k\ Q^2}{d^2}

\displaystyle F_D=-\frac{49}{36}F_1

Comparing the magnitudes of each force is just a matter of computing the fractions

\displaystyle \frac{41}{36}=1.13,\ \frac{1}{4}=0.25,\ \frac{9}{4}=2.25,\ \frac{49}{36}=1.36

a.

We can see the charge C experiences the greatest net force, and charge B receives the smallest net force

b.

The ratio of the greatest to the smallest net force is

\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}=9

The greatest force is 9 times the smallest net force

7 0
3 years ago
What magnification is best for the observation of most tissue slides? Explain why this has proved to be true?
Komok [63]

Answer:

The 10X objective is use for the identification of actual size of histology tissues and 4X magnification is best for observation of most tissues slides

Explanation:

4X magnification is best for observation of most tissues slides because it has an objective lens that have lower power and have great high field overview which make it very easier to locate specimens on the slide. It is use to get the overview of histology slides. It is use to showcase more detailed observations about histology.

The 40X objective is use majorly to identify tissue , to observe the finer details and study tissue organization on the histology slide.

7 0
4 years ago
A child throws a baseball upward with an initial velocity of 20 m/s. The child wants to throw the baseball at least as high as t
Umnica [9.8K]
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:
E= \frac{1}{2}mv^2
where m is the ball's mass and v its initial velocity, 20 m/s.

When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:
E=mgh

for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have
\frac{1}{2}mv^2 = mgh
From which we find the maximum height of the ball:
h= \frac{v^2}{2g}= \frac{(20 m/s)^2}{2 \cdot 9.81 m/s^2}=20.4 m

Therefore, the answer is yes, the ball will reach the top of the tree.

5 0
3 years ago
True or false please help me now.
jolli1 [7]

Answer:

false

Explanation:

8 0
2 years ago
Other questions:
  • An airplane touches down on the runway with a speed of 70 m/s2. Determine the airplane after each second of its deceleration.
    6·1 answer
  • During a tennis match, a player serves the ball at a speed s, with the center of the ball leaving the racquet at angle θ below t
    15·1 answer
  • The 49-g arrow is launched so that it hits and embeds in a 1.45 kg block. The block hangs from strings. After the arrow joins th
    5·1 answer
  • Suppose a zero-resistance rod slides to the right on two zero-res a distance of 0.330 m. The rails are connected by a 16 2 resis
    8·2 answers
  • How can you increase the current in a circuit?
    8·1 answer
  • Why the change of the pressure and temperature affect the velocity of the sound ​
    9·1 answer
  • The speed limit on many roads in a town 13.5 m/s outside schools this is limit is often reduced by one third
    11·1 answer
  • If you know what a JW is LET ME KNOW and it is a type of ppl
    5·2 answers
  • Explain what matter is
    9·2 answers
  • An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement fr
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!