Answer:
The mass of water that will evaporate 2.857 kg.
Explanation:
Given;
temperature of the water, T = 100 c
rate of heat transfer, H = 2 kW = 2000 w
time, t = 10 min = 10 min x 60s = 600s
heat capacity of water is given by;
Q = McΔT
Where;
Q is the quantity of heat transfer to the pan = P x t = 2000 x 600 = 1200000 J.
c is specific heat capacity of water = 4200 J/kg.°C
m = (Q) / (cΔT)
m = (1200000) (4200 x 100)
m = 2.857 kg
Therefore, the mass of water that will evaporate 2.857 kg.
Answer:
Explanation:
Given
density 
diameter 
Magnetic field 
Force on the current carrying conductor placed in a magnetic field

where L=length of conductor
=angle between magnetic field and current
If the wire is floating then weight must be balanced by weight of wire

Therefore




Answer:
hey mate here is your answer
So if an object has a very small velocity (not moving very far over time, even though a large force may be applied to it, the Power will remain small. ... Stepping on the gas, or "speeding up" the car, is applying a force which will increase velocity and increase power.
please mark me as a brainliest
Assuming the object was originally at rest, it must have been traveling for
14.0/3.45 = 4.06 seconds
Answer:
(a) 21.36 ohms
(b) 5.62 A
Explanation:
Parameters given:
Potential difference, V = 120 V
Power, P = 674 W
(a) Power is given as:
P = V²/R
Where R is resistance
=> R = V²/P
R = 120²/674
R = 14400/674
R = 21.36 ohms
(b) Power is also given as:
P = I*V
Where I = Current (time rate of flow of Electric charge)
=> I = P/V
I = 674/120
I = 5.62 A