Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts
For this case you must first know the definition of density.
D = m / v
where,
m: mass
v: volume.
You can then write the following hypothesis:
IF you know two physical characteristics of an object then you can determine the density. First weigh the object, THEN measure its volume BECAUSE the density is the quotient between the mass and the volume of an object.
Data is inappropriate
here, we need gauge of the wire i.e., diameter of the wire, so that we calculate the resistance by using the formula
R = ρl/A
where R= resistance ; Ω
l = length of wire ; m
A = area of wire ; m²
ρ = resistivity ; Ω-m
But in general ohms law is
V = I R
R = V/I ;
but here we also calculate "R" from length of wire in which the current is flowing.
I hope it is helpful to you.
1. Resonance. Mechanical waves act on or through a medium, these waves can often have frequencies that are synchronized in a way that makes them act on the matter in the medium more "aggressively."
The 2 spots after the decimal still counts toward the total the figures