Answer:
to VSEPR theory, the shape of a molecule is related to the organization of the central atom's valence shell electrons. The valence shell electrons are all negatively charged and therefore are constantly repelling each other. This repulsion is what gives a molecule its three-dimensional shape.
Answer:
See explanation.
Explanation:
Hello,
In this case, we say that chemical reactions are governed by the law of conservation of mass, which states that matter cannot be neither created nor destroyed by transformed, for that reason, we need to balance chemical reactions in order to ensure all the atoms to be in the same quantity at both reactants and products.
Moreover, equilibrium is defined as such condition at which the concentration of both reactants and products stop changing over the time so they become constant as well as their null reaction rate.
A widely acknowledged reaction is the HABER one which consists on the synthesis of ammonia by using elemental nitrogen and hydrogen:

In such reaction, we have two nitrogens at both reatants and products and six hydrogens at at both reatants and products for us to obey the law of conservation of mass. Furthermore, as the time goes by, nitrogen reacts with hydrogen, nonetheless, they do not react indefinitely, they have a limit that is equilibrium, so their moles stop being consumed and remain unchanged as well as the produced moles of ammonia.
Best regards.
The mass of pentane the student should weigh out is
The density of pentane is 0.626 gcm-3
To calculate the mass of pentane following expression is used,
(Density is defined as the mass divide by volume)
Density = mass / volume
mass of pentane = Density of pentane * Volume of pentane
mass of pentane = 0.626 gcm-3 * 45.0 mL
= 28.17 g
Here the unit of mass of pentane is g,
However the unit of density is gcm-3 and unit of volume is mL i.e. cm3
Hence, Mass = gcm-3 * cm3
Mass = g
The mass of pentane the student should weigh out is 28.17g
Learn more about Density on
brainly.com/question/1354972
#SPJ1
Answer:
ΔH = -20kJ
Explanation:
The enthalpy of formation of a compound is defined as the change of enthalpy during the formation of 1 mole of the substance from its constituent elements. For H₂S(g) the reaction that describes this process is:
H₂(g) + S(g) → H₂S(g)
Using Hess's law, it is possible to sum the enthalpies of several reactions to obtain the change in enthalpy of a particular reaction thus:
<em>(1) </em>H₂S(g) + ³/₂O₂(g) → SO₂(g) + H₂O(g) ΔH = -519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
The sum of -(1) + (2) + (3) gives:
<em>-(1) </em>SO₂(g) + H₂O(g) → H₂S(g) + ³/₂O₂(g) ΔH = +519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
<em>-(1) + (2) + (3): </em><em>H₂(g) + S(g) → H₂S(g) </em>
<em>ΔH =</em> +519kJ - 242kJ - 297kJ = <em>-20 kJ</em>
<em />
I hope it helps!