Answer:
8.33mol/L
Explanation:
First, let us calculate the molar mass of of formaldehyde (CH2O). This is illustrated below:
Molar Mass of CH2O = 12 + (2x1) + 16 = 12 + 2 + 16 = 30g/mol
Mass of CH2O from the question = 0.25g
Number of mole CH2O =?
Number of mole = Mass /Molar Mass
Number of mole of CH2O = 0.25/30 = 8.33x10^-3mole
Now we can calculate the molarity of formaldehyde (CH2O) as follow:
Number of mole of CH2O = 8.33x10^-3mole
Volume = 1mL
Converting 1mL to L, we have:
1000mL = 1L
Therefore 1mL = 1/1000 = 1x10^-3L
Molarity =?
Molarity = mole /Volume
Molarity = 8.33x10^-3mole/1x10^-3L
Molarity = 8.33mol/L
Therefore, the molarity of formaldehyde (CH2O) is 8.33mol/L
I believe the answer is B. PO4-3
Answer:
Enthalpy of vaporization = 30.8 kj/mol
Explanation:
Given data:
Mass of benzene = 95.0 g
Heat evolved = 37.5 KJ
Enthalpy of vaporization = ?
Solution:
Molar mass of benzene = 78 g/mol
Number of moles = mass/ molar mass
Number of moles = 95 g/ 78 g/mol
Number of moles = 1.218 mol
Enthalpy of vaporization = 37.5 KJ/1.218 mol
Enthalpy of vaporization = 30.8 kj/mol
The balanced chemical equation is,
2Mg+2HCl→2MgCl+H2↑