Answer:
1) The risk of high cost due to increased resource requirements
2) The risk of late entry into the (a changed) market
Explanation:
The analysis being performed by the engineers = A cost benefit analysis to determine if a new technology should be developed
A cost-benefit analysis is a process of appraising or measuring the advantages, benefits of a policy, action or decision, so as to find the (equilibrium) balance point between the costs of the decision or action
The risk to be considered are;
1) The risk of high cost due to increased resource requirements
The increased cost required for the development of the new technology now which due to the unlikely existence of a similar invention in the market that will give them an advantage of increased profits
2) The risk of late entry into the (a changed) market
The changes in the consumer preferences, market landscape, and the likely introduction into the market of a similar invention by the competition in the near future which will reduce the amount of profits that can be gained from the invention
Answer:
Hydrofluoric acid.
Explanation:
To know which of the acid is the strongest, let us determine the pka of each acid. This is illustrated below:
1. Acetic acid
Ka = 1.8x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 1.8x10^-5
pKa = 4.74
2. Benzoic acid
Ka = 6.5x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 6.5x10^-5
pKa = 4.18
3. Hydrofluoric acid.
Ka = 6.8x10^-4
pKa =..?
pKa = –logKa
pKa = –Log 6.8x10^-4
pKa = 3.17
4. Hypochlorous acid
Ka = 3.0x10^-8
pKa =..?
pKa = –logKa
pKa = –Log 3.0x10^-8
pKa = 7.52
Note: the smaller the pKa value, the stronger the acid.
The pka of the various acids as calculated above is given below:
Acid >>>>>>>>>>>>>>>>>> pKa
1. Acetic acid >>>>>>>>>> 4.74
2. Benzoic acid >>>>>>>> 4.18
3. Hydrofluoric acid >>>> 3.17
4. Hypochlorous acid >> 7.52
From the above illustration, we can see that hydrofluoric acid has the lowest pKa value. Therefore, hydrofluoric acid is the strongest among them.
Answer:
D
Explanation:
Scientists always perform tests and observe and measure in the physical world to prove their points or answer their questions.
Complete Question
49.9 ml of a 0.00292 m stock solution of a certain dye is diluted to 1.00 L. the diluted solution has an absorbance of 0.600. what is the molar absorptivity coefficient of the dye
Answer:
The value is
Explanation:
From the question we are told that
The volume of the stock solution is
The concentration of the stock solution is 
The volume of the diluted solution is 
The absorbance is 
Generally the from the titration equation we have that

=> 
=> 
Generally from Beer's law we have that

=> 
Here l is the length who value is 1 cm because the unit of molar absorptivity coefficient of the dye is 
So
=>
The number of moles in 32.5g of aluminum chloride is approximately 0.250 moles.