Answer:
Radiation is energy. It can come from unstable atoms that undergo radioactive decay, or it can be produced by machines. Radiation travels from its source in the form of energy waves or energized particles. There are different forms of radiation and they have different properties and effects.
Related information in Spanish (Información relacionada en español)
On this page:
Ionizing and non-ionizing radiation
Electromagnetic spectrum
Types of ionizing radiation
Periodic Table
Non-Ionizing and Ionizing Radiation
There are two kinds of radiation: non-ionizing radiation and ionizing radiation.
Non-ionizing radiation has enough energy to move atoms in a molecule around or cause them to vibrate, but not enough to remove electrons from atoms. Examples of this kind of radiation are radio waves, visible light and microwaves.
Ionizing radiation has so much energy it can knock electrons out of atoms, a process known as ionization. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes. Ionizing radiation comes from x-ray machines, cosmic particles from outer space and radioactive elements. Radioactive elements emit ionizing radiation as their atoms undergo radioactive decay.
Radioactive decay is the emission of energy in the form of ionizing radiationHelpionizing radiationRadiation with so much energy it can knock electrons out of atoms. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes.. The ionizing radiation that is emitted can include alpha particles, beta particles and/or gamma raysHelpgamma raysA form of ionizing radiation that is made up of weightless packets of energy called photons. Gamma rays can pass completely through the human body; as they pass through, they can cause damage to tissue and DNA.. Radioactive decay occurs in unstable atoms called radionuclides.
Explanation:
Carbon(C):
number of moles= mass/molar mass(Mr)
=65.5/12
=5.5 moles
Hydrogen(H):
number of moles=mass/molar mass (Mr)
=5.5/1
=5.5 moles
Oxygen (O):
number of moles = mass/molar mass (Mr)
=29.0/16
=1.8 moles
EF= lowest number of moles over each of the elements
So,
C= 5.5/1.8 = 3
H= 5.5/1.8 = 3
O= 1.8/1.8 = 1
Therefore Emperical formula= C3H3O
The initial two columns of the periodic table make the s-square, and the components in this square share practically speaking that they have a tendency to lose electrons to pick up soundness.
Explanation:
The given data is as follows.
= 0.483,
= 0.173 M,
= 0.433 M,
= 0.306 M,
= 9.0 atm
According to the ideal gas equation, PV = nRT
or, P =
Also, we know that
Density = 
So, P = MRT
and, M = 
= 
= 
= 0.368 mol/L
Now, we will calculate the cell potential as follows.
E = ![E^{o} - \frac{0.0591}{n} log \frac{[Co^{2+}]^{2}[Cl_{2}]}{[Co^{3+}][Cl^{-}]^{2}}](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5BCo%5E%7B2%2B%7D%5D%5E%7B2%7D%5BCl_%7B2%7D%5D%7D%7B%5BCo%5E%7B3%2B%7D%5D%5BCl%5E%7B-%7D%5D%5E%7B2%7D%7D)
= 
= 
= 
= 0.483 - 0.0185
= 0.4645 V
Thus, we can conclude that the cell potential of given cell at
is 0.4645 V.
Answer:
They would be more efficient in ground fires since carbon dioxide is much greater in mass then oxygen, so its affected by gravity .
Explanation: