The pressure of the CO₂ = 0.995 atm
<h3>Further explanation</h3>
The complete question
<em>A student is doing experiments with CO2(g). Originally, a sample of gas is in a rigid container at 299K and 0.70 atm. The student increases the temperature of the CO2(g) in the container to 425K.</em>
<em>Calculate the pressure of the CO₂ (g) in the container at 425 K.</em>
<em />
<em />
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

P₁=0.7 atm
T₁=299 K
T₂=425 K

<em />
Answer:
Mass = 6.538 g
Explanation:
Given data:
Mass of zinc hydroxide produced = 9.65 g
Mass of zinc required = ?
Solution:
Chemical equation:
Zn + 2MnO₂ + H₂O → Zn(OH)₂ + Mn₂O₃
Number of moles of zinc hydroxide:
Number of moles = mass/molar mass
Number of moles = 9.65 g/ 99.42 g/mol
Number of moles = 0.1 mol
now we will compare the moles of zinc and zinc hydroxide,
Zn(OH)₂ : Zn
1 : 1
0.1 : 0.1
Mass of zinc required:
Mass = number of moles × molar mass
Mass = 0.1 mol × 65.38 g/mol
Mass = 6.538 g
If it is assumed that there are only two isotopes then the percent abundance needs to add up to 100%
100-35= 65%
The second isotope will have a 65% abundance.
<span />
Answer:
A) Sample B has more calcium carbonate molecules
Explanation:
M = Molar mass of calcium carbonate = 100.0869 g/mol
= Avogadro's number = 
For the 4.12 g sample
Moles of a substance is given by

Number of molecules is given by

For the 19.37 g sample

Number of molecules is given by


So, sample B has more calcium carbonate molecules.
The ratio of the elements of carbon, oxygen, calcium atoms, ions, has to be same in both the samples otherwise the samples cannot be considered as calcium carbonate. Same is applicable for impurities. If there are impurites then the sample cannot be considered as calcium carbonate.
Answer:
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
Explanation:
When we balance a chemical equation, what we are trying to do is to achieve the same number of atoms for each element on both sides of the arrow. On the right of the arrow is where we can find the products, while the reactants are found on the left of the arrow.
We usually balance O and H atoms last.
AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 1
Cl --- 3
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
2 AsCl₃ + H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 2
S --- 1
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of As atoms is now balanced.
2 AsCl₃ + 3 H₂S → As₂S₃ +HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 1
H --- 1
S --- 3
The number of S atoms is now equal on both sides.
2 AsCl₃ + 3 H₂S → As₂S₃ + 6 HCl
<u>reactants</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
<u>products</u>
As --- 2
Cl --- 6
H --- 6
S --- 3
The equation is now balanced.