1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
14

Four long wires are each carrying 6.0 A. The wires are located

Physics
1 answer:
Firdavs [7]3 years ago
5 0

Answer:

B_T=2.0*10^-5[-\hat{i}+\hat{j}]T

Explanation:

To find the magnitude of the magnetic field, you use the following formula for the calculation of the magnetic field generated by a current in a wire:

B=\frac{\mu_oI}{2\pi r}

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

I: current = 6.0 A

r: distance to the wire in which magnetic field is measured

In this case, you have four wires at corners of a square of length 9.0cm = 0.09m

You calculate the magnetic field in one corner. Then, you have to sum the contribution of all magnetic field generated by the other three wires, in the other corners. Furthermore, you have to take into account the direction of such magnetic fields. The direction of the magnetic field is given by the right-hand side rule.

If you assume that the magnetic field is measured in the up-right corner of the square, the wire to the left generates a magnetic field (in the corner in which you measure B) with direction upward (+ j), the wire down (down-right) generates a magnetic field with direction to the left (- i)  and the third wire generates a magnetic field with a direction that is 45° over the horizontal in the left direction (you can notice that in the image attached below). The total magnetic field will be:

B_T=B_1+B_2+B_3\\\\B_{T}=\frac{\mu_o I_1}{2\pi r_1}\hat{j}-\frac{\mu_o I_2}{2\pi r_2}\hat{i}+\frac{\mu_o I_3}{2\pi r_3}[-cos45\hat{i}+sin45\hat{j}]

I1 = I2 = I3 = 6.0A

r1 = 0.09m

r2 = 0.09m

r_3=\sqrt{(0.09)^2+(0.09)^2}m=0.127m

Then you have:

B_T=\frac{\mu_o I}{2\pi}[(-\frac{1}{r_2}-\frac{cos45}{r_3})\hat{i}+(\frac{1}{r_1}+\frac{sin45}{r_3})\hat{j}}]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[(-\frac{1}{0.09m}-\frac{cos45}{0.127m})\hat{i}+(\frac{1}{0.09m}+\frac{sin45}{0.127m})]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[-16.67\hat{i}+16.67\hat{j}]\\\\B_T=2.0*10^-5[-\hat{i}+\hat{j}]T

You might be interested in
Which of the following is most useful to determine how much energy is being used by a circuit in a given amount of time?
user100 [1]

Answer:

The answer is A.

Explanation:

5 0
3 years ago
"When fire stopping material is used where more than ____________________ nonmetallic sheathed cables pass through wood framing
GenaCL600 [577]

Answer: When fire stopping material is used where more than 2 non-metallic sheathed cables pass through wood framing members, their ampacities must be adjusted, according to 310.15"

Answer is 2

8 0
3 years ago
Which energy transformation converts energy from the sun’s core to light energy needed by plants?
Assoli18 [71]
Nuclear to electromagnetic
3 0
3 years ago
Which telescope would be better viewing a faint, distant star? Why?
grin007 [14]
Reflecting telescope. Reflecting telescopes tend to have larger objective (due to the use of mirrors, mirrors are a lot cheaper than lenses) and have the ability to collect more light, while refracting telescopes are limited to objective lenses with smaller diameters due to their structural limitations (chromatic abbreviation, for example). Therefore, reflecting telescopes should be better at viewing faint distant stars
4 0
2 years ago
Una caja de 5.0kg de masa se acelera desde el reposo a través del piso mediante una fuerza a una tasa de 2.0 /s2 durante 7.0s en
Nady [450]

Responder:

<h2>490 julios </h2>

Explicación:

Se dice que el trabajo se realiza cuando una fuerza aplicada a un objeto hace que el objeto se mueva a través de una distancia. El trabajo realizado por un cuerpo se expresa mediante la fórmula;

Workdone = Fuerza * Distancia

Como Fuerza = masa * aceleración,

Workdone = masa * aceleración * distancia

Masa dada = 5.0kg, aceleración = 2.0m / s² d =?

Para obtener d, usaremos una de las leyes del movimiento,

d = ut + 1 / 2at²

u = 0 (ya que el cuerpo acelera desde el reposo) yt = 7.0s

d = 0 + 1/2 (2) (7) ²

d = 49m

Workdone = 5 * 2 * 49

Workdone = 490 Julios

4 0
3 years ago
Other questions:
  • Frost on the grass in autumn is an example of
    13·1 answer
  • Instruments in an airplane which is in level flight indicate that the velocity relative to the air (airspeed) is 180.00 km/h and
    8·1 answer
  • Which vector best represents the net force acting on +3C charge in the diagram?
    10·2 answers
  • Which components of the atom has a positive charge
    10·2 answers
  • Astronomers are comparing two stars that are known to have the
    12·1 answer
  • A 49 kg person is being dragged in their sleeping bag to the lake by a 593 N
    15·1 answer
  • 220V and 5A is supplied to the primary coil. The turns ratio is 500. What is the power on the secondary coil?
    14·1 answer
  • A 2N and 6N force pull on an object to the right and a 4N force pulls to the left a 0.5kg object. What is the net force on the o
    14·1 answer
  • Which statement describes a surface wave?
    8·1 answer
  • The Ancient Roman economy did not make use of
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!