Answer:
Threatened Species: A threatened species is a species at risk but not yet endangered. California sea otters were classififed as a threatened species. Laws were passed to protect the otters and now they have increased their population size.
Invasive Species: One of the main causes of extinction and endangered species is the introduction of an exotic species. New exotic species are called invasive species. Invasive species can disrupt food chains, carry disease, prey on native species directly, and out-compete native species for limited resources, like food.
Extinction: If a population decreases too much in numbers, they disappear. Extinct species mean that the species has died out and no individuals left. An example of extinction: New Zealand was once home to a bird called the Giant Moa. Humans settled as their population increased the Moa population decreased. The species is now extinct.
Explanation:
Answer:
See attached picture.
Explanation:
Hello!
In this case, since C2H3Cl is an organic compound we need a central C-C parent chain to which the three hydrogen atoms and one chlorine atom provides the electrons to get all the octets except for H as given on the statement.
In such a way, on the attached picture you can find the required Lewis dot structure without formal charges and with all the unshared electron pairs, considering there is a double bond binding the central carbon atoms in order to compete their octets.
Best regards!
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
I believe that sugar is a compound because there are elements that make up sugar
Answer:There is no relationship between the viscosity and density of a fluid. While viscosity is the thickness or thinness of a fluid, density refers to the space between its particles. However, both properties are affected by temperature. When a fluid is heated, its particles move far apart, and it also becomes less viscous.