The appropriate response is Zero degrees. The beam will leave the two mirrors along a way parallel to the one it came in on. This is the guideline of the corner reflector, which is frequently utilized as a radar target. Take note of that the corner reflector utilizes three reflecting surfaces (that are set up at 90o from each other) rather than the two like are being utilized here. Wikipedia has a truly awesome drawing that shows this two-dimentional issue pleasantly. A moment connection is given to the article on the corner reflector and the 3-D angles.
Answer:
(a) 3107.98 J
(b) 14530.6 J
Explanation:
mass, m = 3.56 kg
angular speed, ω = 179 rad/s
Moment of inertia of solid cylinder, I = 1/2 mr^2
where, m is the mass and r be the radius of the cylinder.
(a) radius, r = 0.330 m
I = 0.5 x 3.56 x 0.330 x 0.330 = 0.194 kgm^2
The formula for the rotational kinetic energy is given by

K = 0.5 x 0.194 x 179 x 179 = 3107.98 J
(b) radius, r = 0.714 m
I = 0.5 x 3.56 x 0.714 x 0.714 = 0.907 kgm^2
The formula for the rotational kinetic energy is given by

K = 0.5 x 0.907 x 179 x 179 = 14530.6 J
Answer:
t = 0.657 s
Explanation:
given,
initial vertical velocity = 7.5 m/s
initial horizontal velocity = 0 m/s
angle = 49◦
using kinetic equation
final velocity in vertical direction
v sinθ = u_y - gt ........................(1)
final velocity in horizontal direction
v cosθ = u_x + a_x × t
here u_x = 0.0 m/s
v cosθ = a_x×t ......................(2)
Dividing equation (1) / (2)

solving for time t

u_y = initial velocity along x direction
acceleration along a_x = 1.4 m/s²
g = acceleration due to gravity = 9.8 m/s²
θ = 43° , u_y = 7.5 m/s

t = 0.657 s
time taken by the particle is t = 0.657 s