The frequency of rotation of Mars is 0.0000113 Hertz.
<u>Given the following data:</u>
- Period = 1 day and 37 minutes.
To find the frequency of rotation in Hertz:
First of all, we would convert the the value of period in days and minutes to seconds because the period of oscillation of a physical object is measured in seconds.
<u>Conversion:</u>
1 day = 24 hours
24 hours to minutes = × = minutes
1 minute = 60 seconds
1477 minute = X seconds
Cross-multiplying, we have:
×
X = 88620 seconds
Now, we can find the frequency of rotation of Mars by using the formula:
<em>Frequency </em><em>of rotation</em> = <em>0.0000113 Hertz</em>
Therefore, the frequency of rotation of Mars is 0.0000113 Hertz.
Read more: brainly.com/question/14708169
A freight car of mass 20,000 kg moves along a frictionless level railroad track ... After the push the skateboarder II moves with a velocity of 2 m/s to ... After the collision the cars stick to each other and ... diver jumps with a velocity of 3 m/s in opposite ... A 10 kg object moves at a constant velocity 2 m/s to the right and collides
A fixed volume is where either a solid or liquid has a volume that is constant under the same pressure and temperature. A gas cannot have a fixed volume because it changes by itself without any human interaction.
Best of Luck!
Answer:17.08 s
Explanation:
Given
distance between First and second Runner is 45.6 m
speed of first runner=3.1 m/s
speed of second runner=4.65 m/s
Distance between first runner and finish line is 250 m
Second runner need to run a distance of 250+45.6=295.6 m
Time required by second runner
time required by first runner to reach finish line
Thus second runner reach the finish line 80.64-63.56=17.08 s earlier
Answer:
Final speed of boat + man is 1.66 m/s
Explanation:
As we know that there is no friction on the system or there is no external force on this system
So here we can use momentum conservation here
so we have
m = 85 kg
M = 135 kg
v = 4.30 m/s
now we have