Answer:
(a) 
(b) 
Explanation:
(a) Since a constant external force is applied to the body, it is under an uniformly accelerated motion. Using the following kinematic equation, we calculate the final velocity of the mass if it is initially at rest(
):

According to Newton's second law:

Replacing (2) in (1):

(b) In this case we have
. So, we use the final velocity equation:

For the answer to the question above,
we can get the number of fringes by dividing (delta t) by the period of the light (Which is λ/c).
fringe = (delta t) / (λ/c)
We can find (delta t) with the equation:
delta t = [v^2(L1+L2)]/c^3
Derivation of this formula can be found in your physics text book. From here we find (delta t):
600,000^2 x (11+11) / [(3x10^8)^3] = 2.93x10^-13
2.93x10^-13/ (589x10^-9 / 3x10^8) = 149 fringes
This answer is correct but may seem large. That is because of your point of reference with the ether which is usually at rest with respect to the sun, making v = 3km/s.
Complete Question
A proton is located at <3 x 10^{-10}, -5*10^{-10} , -5*10^{-10}> m. What is r, the vector from the origin to the location of the proton
Answer:
The vector position is 
Explanation:
From the question we are told that
The position of the proton is
Generally the vector location of the proton is mathematically represented as

So substituting values

Answer:
64.5 cm
Explanation:
30 * 80 + x * 110 = 50* 190 => x = 64.5
Seismic wave is the answer