At the center, when the bob is hanging straight down
Answer:
The direction angle θ of the resultant in the Polar (positive) specification is then θ = α + 60°. The Law of Cosines is used to calculate the magnitude (r) and the Law of Sines is used to calculate the angle (α).
Answer:
ΔE = 1.031 eV
Explanation:
For this exercise let's calculate the energy of the photons using Planck's equation
E = h f
wavelength and frequency are related
c = λ f
f = c /λ
let's substitute
E = h c /λ
let's calculate
E = 6.63 10⁻³⁴ 3 10⁸/1064 10⁻⁹
E = 1.869 10⁻¹⁹ J
let's reduce to eV
E = 1.869 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E = 1.168 eV
therefore the electron affinity is
ΔE = E - 0.137
ΔE = 1.168 - 0.137
ΔE = 1.031 eV
Answer:
Y = Stress / Strain = (F / A) / (l / L) where l is the change in length
Since L is doubled and A remains the same one would expect l, the change in length to also double so Y remains the same.
As an example think of hanging a weight from a spring and the same weight from a similar spring of twice the length - one would expect the longer spring to show twice the extension of the shorter spring.
Answer:
A car engine has more power than a horse because a car engine does the same amount of work in time. Yasmin and Raj each had 10 boxes of equal weight to stack next to each other on the same shelf, at the same height and in the same arrangement. Yasmin completed the task in 2 minutes, while Raj took 3 minutes to stack his boxes. Raj applied less power than Yasmin because his stacking took more time to do the same amount of work.
Explanation: