Answer:
18.33 Ns
Explanation:
As the pitch back speed has the opposite direction as before, the change in velocity would be

So the change in momentum of the ball would be the product of its velocity change and its mass

This is equals to the impulse acted on the ball by the bat, which is 18.33 Ns
Answer:
7.6 g
Explanation:
"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.
The heat gained by the copper, water, and ice = the heat lost by the steam
Heat gained by the copper:
q = mCΔT
q = (120 g) (0.40 J/g/K) (40°C − 0°C)
q = 1920 J
Heat gained by the water:
q = mCΔT
q = (70 g) (4.2 J/g/K) (40°C − 0°C)
q = 11760 J
Heat gained by the ice:
q = mL + mCΔT
q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)
q = 4880 J
Heat lost by the steam:
q = mL + mCΔT
q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)
q = 2452 J/g m
Plugging the values into the equation:
1920 J + 11760 J + 4880 J = 2452 J/g m
18560 J = 2452 J/g m
m = 7.6 g
Answer:
Both will be attractive in nature.
Explanation:
In the given case, the direction of the magnetic field is same in both loops as the direction of the current is same in both loops. When two parallel straight wire carrying current in the same direction are brought close to each other, the force between them is attractive in nature. In the same way, when two coplanar, circular and concentric loops of wire are carrying current in the same direction, the force between them is attractive in nature. It can be checked by using right hand thumb rule.
Check out other explanations.
brainly.com/question/15555539
#SPJ10
Answer:
tan is 15 for that triangle