Answer:
Rate of change of magnetic field is
Explanation:
We have given diameter of the circular loop is 13 cm = 0.13 m
So radius of the circular loop 
Length of the circular loop 
Wire is made up of diameter of 2.6 mm
So radius 
Cross sectional area of wire 
Resistivity of wire 
Resistance of wire 
Current is given i = 11 A
So emf 
Emf induced in the coil is 


Simple cells have liquid chemicals, making it harder for it to carry. While as dry cells have no liquid chemicals, making it easier to carry.
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129
Answer:
Direction of ship: 9.45° West of North
Ship's relative speed: 7.87m/s
Explanation:
A. Direction of ship: since horizontal of the velocity of boat relative to the ground is 0
Vx=0
Therefore, -VsSin∅+VcCos∅40°
Sin∅ = Vc/Vs × Cos 40°
Sin∅ = 1.5/7 ×Cos40°
Sin∅= 0.164
∅= Sin-¹ (0.164)
∅= 9.45° W of N
B. Ship's relative speed:
Vy= VsCos∅ + Vcsin40°
= 7Cos9.45° + 1.5sin40°
= 7×0.986 + 1.5×0.642
= 7.865
= 7.87m/s