There are two<span> main types of </span>wave<span> interference: constructive interference and destructive interference. Constructive interference </span>happens<span> when the amplitude of the combined </span>waves<span> is larger than the amplitudes of the single </span>waves<span>. This can occur when the </span>crests of two<span> transverse </span><span>waves overlap.
Hope this helps!!! :D
</span>
Answer: Acceleration will have 2 components, vertical and horizontal.
Net-vertical component can be positive, zero or negative depending upon the magnitude of the upward component of the applied acceleration.
Net-horizontal acceleration will be equal to the horizontal component of the applied acceleration.
Explanation:
Since acceleration is a vector quantity and the cart is being pushed up the ramp, the ramp would be at some angle to the horizontal and hence there will be vertical and horizontal components of acceleration.
<u>For vertical acceleration:</u>
If the magnitude of the upward component of the applied acceleration is greater than the value of the acceleration due to gravity then the net vertical acceleration will be upward because it will overtake the value of acceleration due to gravity.
In case the upward component of the applied acceleration is lesser than the value of the acceleration due to gravity then the net vertical acceleration will be downward.
<u>For horizontal acceleration:</u>
This component remains unaffected and is equal to the horizontal component of the applied acceleration because there is no other acceleration acting in the horizontal direction.
But the net acceleration will not be solely in the vertical or horizontal direction because the block has to move forward on the inclined ramp so there will always exist a horizontal and a vertical component making the net acceleration to parallel to the ramp in upward direction if the body is going up the ramp.
Answer:
Condensation
Explanation:
The phase change in which a substance changes from a gas to liquid is Condensation.
There are 3 natural states of matter;
Solids, Liquids, and Gases.
Matter under certain conditions can change from one state to another. When Solids are heated they change into Liquids through the process of Heating. Upon cooling, the Liquids convert to Solid through freezing. When a Liquid such as water is heated, it converts into the Gaseous state through evaporation. Upon cooling, the Gas converts back into the Liquid state through Condensation.
Answer:
a. Angular velocity = 0.267rad/s.
b. Centripetal acceleration = 56.25m/s.
Explanation:
<u>Given the following data;</u>
Mass, m = 8kg
Radius, r = 4m
Constant speed, V = 15m/s
a. To find the angular velocity
Angular velocity = radius/speed
Substituting into the equation, we have;
Angular velocity = 4/15
Angular velocity = 0.267rad/s
b. To find the acceleration;
Centripetal acceleration = V²/r
Substituting into the equation, we have;
Centripetal acceleration = 15²/4
Centripetal acceleration = 225/4
Centripetal acceleration = 56.25m/s.
Answer:
d) g/2
Explanation:
We need to use one of Newton's equations of motion to find the position of the stone at any time t.
x(t) = x₀(t) + ut - ¹/₂at²
Where
x₀(t) = initial position of the stone.
x(t) - x₀(t) = distance traveled by the stone at any time.
u = initial velocity of the stone
a = acceleration of the stone
t = time taken
On both planets, before the stone was thrown by the astronaut, x = 0 and t = 0.
=> 0 = x₀(t)
=> x₀(t) = 0
On earth, when the stone returns into the hand of the astronaut at time T on earth, x = 0.
=> 0 = 0 + uT - ¹/₂gT² (a = g)
=> uT = ¹/₂gT²
=> g = 2u/T
On planet X, when the stone returns into the hand of the astronaut, time = 2T , x = 0.
=> 0 = 0 + u(2T) - ¹/₂a(2T)²
=> 2uT = 2aT²
=> a = u/T
By comparing we see that a = g/2.