Answer: The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Explanation:
Mass of the astronaut on the moon , m= 72 kg
Acceleration due to gravity on moon,g = 1.63 
According to Newton second law of motion: F = ma
This will changes to = Weight = mass × g

The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Here, F = m * a
F = m * v/t
Here, m = 81 Kg
v = 22 m/s
t = 1,4 s
Substitute their values,
F = 81 * 22/1.4
F = 81 * 15.71
F = 1273 N
So, Closest value from your options is 1300 N
In short, Your Answer would be Option B
Hope this helps!
Answer:
The second law of a vibrating string states that for a transverse vibration in a stretched string, the frequency is directly proportional to the square root of the string's tension, when the vibrating string's mass per unit length and the vibrating length are kept constant
The law can be expressed mathematically as follows;

The second law of the vibrating string can be verified directly, however, the third law of the vibrating string states that frequency is inversely proportional to the square root of the mass per unit length cannot be directly verified due to the lack of continuous variation in both the frequency, 'f', and the mass, 'm', simultaneously
Therefore, the law is verified indirectly, by rearranging the above equation as follows;

From which it can be shown that the following relation holds with the limits of error in the experiment
m₁·l₁² = m₂·l₂² = m₃·l₃² = m₄·l₄² = m₅·l₅²
Explanation:
Answer:Correct answer: 15.85 kg·m/s
Explanation:
A 30 kg gun is standing on a frictionless sur-face. The gun fires a 50 g bullet with a muzzlevelocity of 317 m/s.The positive direction is that of the bullet.Calculate the momentum of the bullet im-mediately after the gun was fired.
The answer is light, because a transverse wave is a wave vibrating at right angles to the direction of its propagation