1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
15

The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.

what is the value of young's modulus for this aluminum?
Physics
1 answer:
andrey2020 [161]3 years ago
5 0
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
You might be interested in
A car is brought to rest in a distance of 484m using a constant acceleration of -8.0m/s^2. What was the velocity of the car when
Agata [3.3K]

Answer:

88 m/s

Explanation:

To solve the problem, we can use the following SUVAT equation:

v^2-u^2=2ad

where

v is the final velocity

u is the initial velocity

a is the acceleration

d is the distance covered

For the car in this problem, we have

d = 484 m is the stopping distance

v = 0 is the final velocity

a=-8.0 m/s^2 is the acceleration

Solving for u, we find the initial velocity:

u=\sqrt{v^2-2ad}=\sqrt{-2(8.0)(484)}=88 m/s

6 0
3 years ago
How does a Freebody diagram tell you about the net force an object?
Sloan [31]
So you subtract the numbers that are on the same axis. So if your gravitational force is 10 and your normal force is 5 you do 5-10 to get -5 since gravity acts downward
6 0
3 years ago
A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end when it
Tems11 [23]

Answer:

5.4 ms⁻¹

Explanation:

Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.

L = length of the meter stick = 1 m

m = mass of the meter stick

w = angular speed of the meter stick as it hits the floor

v = speed of the other end of the stick

we know that, linear speed and angular speed are related as

v = r w\\w = \frac{v}{r}

h = height of center of mass of meter stick above the floor = \frac{L}{2} = \frac{1}{2} = 0.5 m

I = Moment of inertia of the stick about one end

For a stick, momentof inertia about one end has the formula as

I = \frac{mL^{2} }{3}

Using conservation of energy

Rotational kinetic energy of the stick = gravitational potential energy

(0.5) I w^{2} = mgh\\(0.5)(\frac{mL^{2} }{3}) (\frac{v}{L} )^{2} = mgh\\(0.5)(\frac{v^{2} }{3}) = gh\\(0.5)(\frac{v^{2} }{3}) = (9.8)(0.5)\\v = 5.4 ms^{-1}

7 0
3 years ago
Suppose a car manufacturer tested its cars for front-en4 collisions by hauling them up on a crane and dropping then; from a cert
Brrunno [24]

Answer:

a

Generally from third equation of motion we have that

v^2 =  u^2 + 2a[s_i - s_f]

Here v is the final speed of the car

u is the initial speed of the car which is zero

s_i is the initial position of the car which is certain height H

s_i is the final position of the car which is zero meters (i.e the ground)

a is the acceleration due to gravity which is g

So

v^2 = 0 + 2g[H - 0]

=> v  =  \sqrt{ 2 g H}

b

H  =  9.86 \  m

Explanation:

Generally from third equation of motion we have that

v^2 =  u^2 + 2a[s_i - s_f]

Here v is the final speed of the car

u is the initial speed of the car which is zero

s_i is the initial position of the car which is certain height H

s_i is the final position of the car which is zero meters (i.e the ground)

a is the acceleration due to gravity which is g

So

v^2 = 0 + 2g[H - 0]

=> v  =  \sqrt{ 2 g H}

When v  = 50 \  km/h = \frac{50 *1000}{3600} = 13.9 \  m/s we have that

13.9  =  \sqrt{ 2 g H}

=> H  =  \frac{13.9^2}{2 *  9.8}

=> H  =  9.86 \  m

6 0
3 years ago
To turn a coil of wire into a magnet, run a(n) ____ through it.
evablogger [386]

A.) Electromagnetic Current

please mark me as the brainliest

7 0
3 years ago
Read 2 more answers
Other questions:
  • When do both hemispheres receive the same amount of the sun’s energy?
    11·2 answers
  • Two blocks collide on a frictionless surface. After the collision, the blocks sticktogether. Block A has a mass M and is initial
    11·1 answer
  • Which terrestrial planet would have its surface temperature the most dramatically changed if its greenhouse gases were removed f
    6·1 answer
  • When you lift a bowling ball with a force of 61.1 N, the ball accelerates upward with an acceleration a. If you lift with a forc
    6·1 answer
  • .Please explain to me how to find the momentum
    11·1 answer
  • How long does it take for the Earth to make a complete revolution around the sun?
    14·2 answers
  • Which contributes most to our average dose of background radiation?
    6·1 answer
  • If a car with an initial velocity of 10 m/s accelerates at a rate of 50 m/s^2
    12·1 answer
  • Heat is transferred from the sun-warmed surface of earth to the cooler overlying troposphere via _______
    13·1 answer
  • a car with a mass of 1000-liogram accerlerates from rest, and travels a distanceof 48 meters druing its first 4.0 seconds of uni
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!