1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
15

The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.

what is the value of young's modulus for this aluminum?
Physics
1 answer:
andrey2020 [161]3 years ago
5 0
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
You might be interested in
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
Calcular la energía cinética de un cometa cuya masa es de 5×10 elevado a 31 kg y se mueve con velocidad de 216000km/h
PolarNik [594]

The kinetic energy is 9\cdot 10^{40}J.

Explanation:

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

K is the kinetic energy of the object

m is the mass of the object

v is the speed of the object

For the comet in this problem, we have:

m=5\cdot 10^{31} kg is its mass

v=216,000 km/h is the speed

First, we convert the speed  from km/h to m/s:

v=216,000 \frac{km}{h} \cdot \frac{1000 m/km}{3600 s/h}=60,000 m/s

Therefore, the kinetic energy of the comet is

K=\frac{1}{2}(5\cdot 10^{31})(60,000)^2=9\cdot 10^{40}J

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
If a sheep is running at 3.0 m/s with a mass of 60 kg what is its kinetic energy​
borishaifa [10]

Answer:270joules

Explanation:KE = 1/2mv^2

KE = 1/2(60kg)(3.0)^2 = 270 Joules

8 0
3 years ago
If anyone knows how to do any of these PLEASE help me....im am so confused rn and our teacher sucks at explaining this stuff....
Taya2010 [7]
Take 68.2/60 = 1.137 hr
take 56.9/1.137 = 50.043 mi/hr

take 189/211 = 0.896

24.8/2 = 12.4 m
12.4/82.3 = 0.15s

7 0
3 years ago
Read 2 more answers
PLEASE ANSWER! WILL MARK BRAINLIEST!
Angelina_Jolie [31]

The first one would be thermal energy

8 0
3 years ago
Other questions:
  • The major changes in the state of the universe that occurred immediately after the Big Bang were in ______ and ______.
    15·1 answer
  • How to find friction force given mass and acceleration?
    13·1 answer
  • Hellppppppppppp please thanks
    5·1 answer
  • An object of mass 30 kg is falling in air and experiences a force due to air resistance of 50 newtons. Determine the net force a
    6·1 answer
  • If you could choose between sleeping a full night on earth or a full night on jupiter which would you choose
    6·2 answers
  • What did the bataan death march foreshadow about the war in the pacific?
    6·1 answer
  • The name (blank) means "all land"
    14·1 answer
  • Meaning of geosynchronous satellite
    15·1 answer
  • A 1000 kg car experiences a net force of 9500 N while slowing down from 30 m/s to 16 m/s. How far does it travel while slowing d
    10·1 answer
  • What creates a mechanical turning force in an
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!