Answer: Option (b) is the correct answer.
Explanation:
Vitamins which are soluble in water are known as water-soluble vitamins. And, vitamins which remain insoluble in water are known as water-insoluble vitamins.
Water-soluble vitamins are able to be easily excreted by the human body through urine. For example, vitamin C and vitamin B-complex are water soluble vitamins.
Thus, we can conclude that water-soluble vitamins are easily excreted in the urine.
The kidneys will excrete increased quantities of acid.
Explanation:
The kidneys will excrete excess H+ ions in the blood (remember H+ ions are responsible for acidity) until the acid-base balance is restored in the blood. Bicarbonates, on the other hand, will be aggressively reabsorbed by the renal tubules as the excess H+ are being excreted.
The acid base balance is mainly determined by the quantities of H⁺ and HCO₃⁻ ions in teh blood. These ions come from the dissociation of carbonic acid formed when carbon dioxide from tissues is dissolved in blood plasma.
Answer:
The answer is
<h2>2.71 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
volume of marble = 1564 cm³
1 kg = 1000 g
4.24 kg = 4240 g
mass = 4240 g
The density is

We have the final answer as
<h3>2.71 g/cm³</h3>
Hope this helps you
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
Answer : The molecule
is a polar molecule.
Explanation :
Polar molecule : When the arrangement of the molecule is asymmetrical then the molecule is polar.
Non-polar molecule : When the arrangement of the molecule is symmetrical then the molecule is non-polar.
The given molecule is, 
The electronegativities of oxygen and fluorine are different. The molecular geometry of
is bent. As, Fluorine is more elctronegative than the oxygen. So, the arrows putting towards the more electronegative element i.e, fluorine. These arrows do not balance each other. Due to this, the asymmetrical arrangement of these bonds makes the molecule polar.
Hence, the given molecule
is polar.