The answer is: the mass of 6.02 x 1023 representative particles of the element.
The base SI unit for molar mass is kg/mol, but chemist more use g/mol (gram per mole).
For example, molar mas of ammonia is 17.031 g/mol.
M(NH₃) = Ar(N) + 3 · Ar(H) · g/mol.
M(NH₃) = 14.007 + 3 · 1.008 · g/mol.
M(NH₃) = 17.031 g/mol.
The molar mass (M) is the mass of a given substance (in this example ammonia) divided by the amount of substance.
Answer:
Decomposition of aluminium oxide forms aluminium atoms and oxygen atoms.
Explanation:
<u>Decomposition reaction:</u>
When a single compound break down into two or more simpler products.
For example "AB" reactant undergoes decomposition to form "A" and "B" products.
The chemical reaction is as follows.

The given compound is aluminium oxide.
The decomposition reaction of aluminium oxide is a follows.

The balanced equation is as follows.

Therefore, Decomposition of aluminium oxide forms aluminium atoms and oxygen atoms.
Answer:
The right choice is c. Water molecules have a weakly positive hydrogen end.
Explanation:
The unequal sharing of electrons in water molecule gives a slight negative charge near its oxygen atom ( see image below) and a slight positive charge near its hydrogen atoms. A neutral molecule that has a partial positive charge at one end and a partial negative charge at the other, it is a polar molecule.
so
a. Water molecules have a nonpolar bond.
It is wrong choice because water has polar bond .
b. Water molecules have a weakly positive oxygen end.
Also, a wrong choice due to water molecule gives a slight negative charge near its oxygen atom.
c. Water molecules have a weakly positive hydrogen end.
This is the right choice.
d. Water molecules have two oxygen and two hydrogen atoms
It is wrong choice because water has one oxygen and two hydrogen atoms
<u>So, the right choice is</u>
c. Water molecules have a weakly positive hydrogen end.
Answer:
0.43 mol.
Explanation:
- Knowing that the no. of moles can be calculated using the relation:
<em>no. of moles (n) = mass/molar mass</em>
mass of MgCl₂ = 41.0 g & molar mass of MgCl₂ = 95.211 g/mol.
<em>∴ n = mass/molar mass</em> = (41.0 g)/(95.211 g/mol) = <em>0.43 mol.</em>