The mass of plutonium that will remain after 1000 years if the initial amount is 5 g when the half life of plutonium-239 (239pu, pu-239) is 24,100 years is 2.5 g
The equation is Mr=Mi(1/2)^n
where n is the number of half-lives
Mr is the mass remaining after n half lives
Mi is the initial mass of the sample
To find n, the number of half-lives, divide the total time 1000 by the time of the half-life(24,100)
n=1000/24100=0.0414
So Mr=5x(1/2)^1=2.5 g
The mass remaining is 2.5 g
- The half life is the time in which the concentration of a substance decreases to half of the initial value.
Learn more about half life at:
brainly.com/question/24710827
#SPJ4
Answer:
Here u go
Explanation:
climate change...climate change is when the weather changes drastically and the adaptations change so that some animals environment are no longer suitable for them
I tried to hel
Answer:
0.278 mol HCl
Explanation:
We currently have 185.0 mL of a 1.50 mol/L solution of HCl. We want to find the number of moles there are.
Based on the given information, our volume is 185.0 mL and our molarity is 1.50. Because molarity is defined as moles / Litre, we can easily find the moles given volume by multiplying molarity by volume.
First, though, we must convert millilitres to litres. There are 1000 mL in 1 L, so divide 185.0 by 1000:
185.0 / 1000 = 0.185 L
Now, multiply 0.185 by 1.50:
0.185 L * 1.50 mol/L = 0.278 mol HCl
Thus the answer is 0.278 mol HCl.
<em>~ an aesthetics lover</em>
Answer:
Hi.. U should do like this
Cu + S - - - >Cu2S
Answer:
See explanation and image attached
Explanation:
The acid-catalyzed hydration of 1-methylcyclohexene proceeds by an SN1 mechanism. The reaction involves the formation of carbocations.
Two carbocations are formed leading to the major and minor products. The major product is obtained from the tertiary (more stable) carbocation while the minor product is obtained from the secondary (less stable carbocation).
Tertiary alcohols are not oxidized, hence the major product does not undergo oxidation. However, secondary alcohols are oxidized to ketones.