Answer:
x = pi/2 + 2 pi n x = pi + 2 pi n where n is an integer
x = 5pi /3 + 2 pi n
Step-by-step explanation:
8 cos^2 x + 4 cos x-4 = 0
Divide by 4
2 cos^2 x + cos x-1 = 0
Let u = cos x
2 u^2 +u -1 =0
Factor
(2u -1) ( u+1) = 0
Using the zero product property
2u-1 =0 u+1 =0
u = 1/2 u = -1
Substitute cosx for u
cos x = 1/2 cos x = -1
Take the inverse cos on each side
cos ^-1(cos x) = cos ^-1(1/2) cos ^-1( cos x) =cos ^-1( -1)
x = pi/2 + 2 pi n x = pi + 2 pi n where n is an integer
x = 5pi /3 + 2 pi n
Opposite exterior angles are congruent.
DGH = AEG
DGH = 110
Since AB = CD the trapezoid is isosceles, which means that ∡A = ∡D
Therefore also ∡2 = ∡3 (they are half of the congruent angles)
For the properties of parallel lines (BD and AD) crossed by a transversal (BD) we have ∡3 = ∡CBD.
Now consider triangles AOD and BCD:
∡OAD (2) = ∡ADO (3) = ∡CBD (3) = ∡CDB (4)
T<span>he sum of the angles of a triangle must be 180°, t</span>herefore:
∡AOD = 180 - ∡2 - ∡3
∡BCD = 180 - ∡3 - ∡4
∡AOD = ∡BCD because their measure is the difference of congruent angles.
I think it is angle number 9