Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds
No, gravity acts equally on all objects. The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size. A flat piece of paper has an extended body and "catches" the air and falls more slowly. In a vacuum they would fall at the same rate either way.
Answer:
960 m
Explanation:
Given that,
- Speed = 120 m/s
- Time taken = 4 minutes
We have to find the distance covered.
Firstly, let's convert time in seconds.
→ 1 minute = 60 seconds
→ 4 minutes = (4 × 60) seconds
→ 4 minutes = 240 seconds
Now, we know that,
→ Distance = Speed × Time
→ Distance = (4 × 240) m
→ Distance = 960 m
Therefore, distance covered is 960 m.
The terms are both about changing states. Vaporizing is when you heat something up into a vapor; condensation is when you lower a vapors temperature to make it become a liquid state.
it includes an objects speed and direction