1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
2 years ago
12

Fernanda is working on a physics project. she is experimenting by rolling a marble down a ramp and then seeing how far it rolls

along the floor after leaving the ramp. which would be the dependent variable in fernanda’s experiments? the angle of the ramp the length of the ramp the distance the marble rolls after the ramp the direction that gravity makes the marble roll
Physics
1 answer:
Ratling [72]2 years ago
5 0

The distance covered on the floor after leaving the ramp is the dependent variable.

  • As a result of the marble's size, the substance it is constructed of, and the angle at which it is placed onto the ground, the distance it rolls varies.
  • Therefore, the angle at which the marble is released onto the ground, the type of material used to make the stone, or its size can all be considered independent variables.
<h3>What is Independent variable?</h3>
  • There are independent and dependent variables in every experiment.
  • A variable is considered independent if its change is not influenced by the change in another variable or factor.
<h3>What is Dependent variable?</h3>

In any experiment, the dependent variable must be measured or determined, and it must change as the independent variable does.

Learn more about independent and dependent variable here:

brainly.com/question/1479694

#SPJ4

You might be interested in
Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
Bond [772]

To solve this problem it is necessary to apply the concepts related to rate of thermal conduction

\frac{Q}{t} = \frac{kA\Delta T}{d}

The letter Q represents the amount of heat transferred in a time t, k is the thermal conductivity constant for the material, A is the cross sectional area of the material transferring heat, \Delta T, T is the difference in temperature between one side of the material and the other, and d is the thickness of the material.

The change made between glass and air would be determined by:

(\frac{Q}{t})_{glass} = (\frac{Q}{t})_{air}

k_{glass}(\frac{A}{L})_{glass} \Delta T_{glass} = k_{air}(A/L)_{air} \Delta T_{air}

\Delta T_{air} = (\frac{k_{glass}}{k_{air}})(\frac{L_{air}}{L_{glass}}) \Delta T_{glass}

\Delta T_{air} = (\frac{0.84}{0.0234})(\frac{5}{4}) \Delta T_{glass}

\Delta T_{air} = 44.9 \Delta T_{glass}

There are two layers of Glass and one layer of Air so the total temperature would be given as,

\Delta T = \Delta T_{glass} +\Delta T_{air} +\Delta T_{glass}

\Delta T = 2\Delta T_{glass} +\Delta T_{air}

20\°C = 46.9\Delta T_{glass}

\Delta T_{glass} = 0.426\°C

Finally the rate of heat flow through this windows is given as,

\Delta {Q}{t} = k_{glass}\frac{A}{L_{glass}}\Delta T_{glass}

\Delta {Q}{t} = 0.84*24*10 -3*0.426

\Delta {Q}{t} = 179W

Therefore the correct answer is D. 180W.

3 0
3 years ago
A cue ball of mass m1 = 0.325 kg is shot at another billiard ball, with mass m2 = 0.59 kg, which is at rest. The cue ball has an
Roman55 [17]

Answer:

v_{2f} = \frac{2vm_1}{m_2 + m_1}

Explanation:

If the collision is elastic and exactly head-on, then we can use the law of momentum conservation for the motion of the 2 balls

Before the collision

P_i = m_1v

After the collision

P_f = m_1v_{1f} + m_2v_{2f}

So using the law of momentum conservation

P_i = P_f

m_1v = m_1v_{1f} + m_2v_{2f}

We can solve for the speed of ball 1 post collision in terms of others:

v_{1f} = v - v_{2f}\frac{m_2}{m_1}

Their kinetic energy is also conserved before and after collision

m_1v^2/2 = m_1v_{1f}^2/2 + m_2v_{2f}^2/2

m_1v^2 = m_1v_{1f}^2 + m_2v_{2f}^2

From here we can plug in v_{1f} = v - v_{2f}\frac{m_2}{m_1}

m_1v^2 = m_1\left(v - v_{2f}\frac{m_2}{m_1}\right)^2 + m_2v_{2f}^2

m_1v^2 = m_1\left(v^2 - 2vv_{2f}\frac{m_2}{m_1} + v_{2f}^2\frac{m_2^2}{m_1^2}\right) + m_2v_{2f}^2

m_1v^2 = m_1v^2 - 2vv_{2f}m_2 + v_{2f}^2\frac{m_2^2}{m_1} + m_2v_{2f}^2

v_{2f}^2(m_2 + \frac{m_2^2}{m_1}) - 2vm_2v_{2f} = 0

v_{2f}(1 + \frac{m_2}{m_1}) = 2v

v_{2f} = \frac{2v}{1 + \frac{m_2}{m_1}} = \frac{2v}{\frac{m_1 + m_2}{m_1}} = \frac{2vm_1}{m_2 + m_1}

8 0
3 years ago
Read 2 more answers
If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is th
Taya2010 [7]

Answer: The magnitude of the current in the second wire 2.67A

Explanation:

Here is the complete question:

Two straight parallel wires are separated by 7.0 cm. There is a 2.0-A current flowing in the first wire. If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is the magnitude of the current in the second wire?

Explanation: Please see the attachments below

4 0
3 years ago
When the Moon orbits Earth, what is the centripetal force?
nata0808 [166]

Answer:

Gravity is the centripetal force when the moon orbits the earth.

5 0
2 years ago
When a sinusoidal wave with speed 20 m/s , wavelength 35 cm and amplitude of 1.0 cm passes, what is the maximum speed of a point
vova2212 [387]

To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion

From the definition we know that the frequency can be expressed as

f = \frac{v}{\lambda}

Where,

v = Velocity \rightarrow 20m/s

\lambda = Wavelength \rightarrow 35*10^{-2}m

Therefore the frequency would be given as

f = \frac{20}{35*10^{-2}}

f = 57.14Hz

The frequency is directly proportional to the angular velocity therefore

\omega = 2\pi f

\omega = 2\pi *57.14

\omega = 359.03rad/s

Now the maximum speed from the simple harmonic movement is given by

V_{max} = A\omega

Where

A = Amplitude

Then replacing,

V_{max} = (1*10^{-2})(359.03)

V_{max} = 3.59m/s

Therefore the maximum speed of a point on the string is 3.59m/s

8 0
3 years ago
Other questions:
  • Assume the population of a large city like New York City is about 4 × 10^6 people, with about 1.97 people per household. Approxi
    13·1 answer
  • Many hot-water heating systems have a reservoir tank connected directly to the pipeline, so as to allow for expansion when the w
    14·1 answer
  • What are similarities and differences between refraction, reflection, diffraction and absorption?
    15·1 answer
  • An ice cube is placed in a microwave oven.
    11·1 answer
  • Two parallel plates have equal and opposite charges. When the space between the plates is evacuated, the electric field is E= 3.
    5·1 answer
  • Can anyone help me with this question?
    8·1 answer
  • In physics, a is a group of related objects that interact with each other and form a complex whole.
    8·2 answers
  • b. Describe in general how terminator devices capture the power of waves. In particular, explain how the oscillating water colum
    11·1 answer
  • The gravitational force between two volleyball players is 3.3x10^-7.
    9·1 answer
  • In a related practical activity, 2 litres of a gas were heated from 35 °C to 75 °C. If the pressure was kept constant, calculate
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!